Skip to main content

Pluggable skills for AI agents

Project description


SkillPacks

Pluggable skillsets for AI agents
Explore the docs »

View Demo · Report Bug · Request Feature

Skillpacks provide a means of fine tuning agents on tools, and the ability to hotswap learned skills at inference time.

Teach a model how to use a website | code base | API | database | application | ...   then swap in that learned layer the moment you need it.

Install

pip install skillpacks

Quick Start

Create an episode to record agent events

from skillpacks import Episode

episode = Episode(remote="https://foo.bar")

Take an action

from mllm import Router, RoleThread
from skillpacks import V1Action, V1EnvState
from agentdesk import Desktop

router = Router.from_env()
desktop = Desktop.local()

thread = RoleThread()
msg = f"""
I need to open Google to search, your available action are {desktop.json_schema()}
please return your selection as {V1Action.model_json_schema()}
"""
thread.post(role="user", msg=msg)

response = router.chat(thread, expect=V1Action)
v1action = response.parsed

action = desktop.find_action(name=v1action.name)
result = desktop.use(action, **v1action.parameters)

Record the action in the episode

event = episode.record(
    state=V1EnvState(),
    prompt=response.prompt,
    action=v1action,
    tool=desktop.ref(),
    result=result,
)

Mark actions as approved

# approve one
episode.approve_one(event.id)

# approve the event and all actions prior to it
episode.approve_prior(event.id)

# approve all
episode.approve_all()

Get all approved actions in an episode

episode = Episode.find(id="123")[0]
actions = episode.approved_actions()

Get all approved actions in a namespace

from skillpacks import ActionEvent

actions = ActionEvent.find(namespace="foo", approved=True)

Get all approved actions for a tool

actions = ActionEvent.find(tool=desktop.ref(), approved=True)

Tune a model on the actions (In progress)

from skillpacks.model import InternVLChat
from skillpacks.runtime import KubernetesRuntime

runtime = KubernetesRuntime()
model = InternVLChat(runtime=runtime)

result = model.train(actions=actions, follow=True, publish=True)

Integrations

Skillpacks is integrated with:

  • MLLM A prompt management, routing, and schema validation library for multimodal LLMs
  • Taskara A task management library for AI agents
  • Surfkit A platform for AI agents
  • Threadmem A thread management library for AI agents

Community

Come join us on Discord.

Backends

Thread and prompt storage can be backed by:

  • Sqlite
  • Postgresql

Sqlite will be used by default. To use postgres simply configure the env vars:

DB_TYPE=postgres
DB_NAME=skills
DB_HOST=localhost
DB_USER=postgres
DB_PASS=abc123

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skillpacks-0.1.69.tar.gz (36.1 kB view details)

Uploaded Source

Built Distribution

skillpacks-0.1.69-py3-none-any.whl (46.7 kB view details)

Uploaded Python 3

File details

Details for the file skillpacks-0.1.69.tar.gz.

File metadata

  • Download URL: skillpacks-0.1.69.tar.gz
  • Upload date:
  • Size: 36.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.7 Darwin/23.4.0

File hashes

Hashes for skillpacks-0.1.69.tar.gz
Algorithm Hash digest
SHA256 ef1f4b3e26a177056b99531b12497d1ca1b673c383d3b884d3fbc3a9c78f6cc6
MD5 e5c132a3d15bfa1e9242b975fdcad3c4
BLAKE2b-256 4dc8b7c0d8a7148d1e7614465686d7034b3c7b7e91bf0049f3ce46b771cbaea2

See more details on using hashes here.

File details

Details for the file skillpacks-0.1.69-py3-none-any.whl.

File metadata

  • Download URL: skillpacks-0.1.69-py3-none-any.whl
  • Upload date:
  • Size: 46.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.7 Darwin/23.4.0

File hashes

Hashes for skillpacks-0.1.69-py3-none-any.whl
Algorithm Hash digest
SHA256 046793855e989708374332793b178ab2f70bcc09e67f493e475df70c8b36b562
MD5 b20aa45ce93f1c58312181dbdbf85d2e
BLAKE2b-256 f76e5d152b31b4d7b67668f8fabdca8eeb00aeb437e663dd39dc795303b972e4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page