Skip to main content

Instant Knowledge Graphs from text documents.

Project description

Skipchunk

Pypi

Travis build status

Documentation Status

Easy search autosuggest with NLP magic.

Out of the box it provides a hassle-free autosuggest for any corpus from scratch, and latent knowledge graph extraction and exploration.

Install

pip install skipchunk

python -m spacy download 'en_core_web_lg'

python -m nltk.downloader wordnet

You also need to have Solr or Elasticsearch installed and running somewhere!

The current Solr supported version is 8.4.1, but it might work on other versions.

The current Elasticsearch supported version is 7.6.2, but it might work on other versions.

Use It!

See the ./example/ folder for an end-to-end OSC blog load:

Solr

Start Solr first! Doesn’t work with Solr cloud yet, but we’re working on it.

You’ll need to start solr using skipchunk’s solr_home directory for now.

Then run this: python solr-blog-example.py

Elasticsearch

Start Elasticsearch first!

Then run this: python elasticsearch-blog-example.py

Features

  • Identifies and groups the noun phrases and verb phrases in a corpus

  • Indexes these phrases in Solr or Elasticsearch for a really good out-of-the-box autosuggest

  • Structures the phrases as a graph so that concept-relationship-concept can be easily found

  • Meant to handle batched updates as part of a full stack search platform

Library API

Engine configuration

You need an engine_config, as a dict, to create skipchunk.

The dict must contain the following entries

  • host (the fully qualified URL of the engine web API endpoint)

  • name (the name of the graph)

  • path (the on-disk location of stateful data that will be kept)

  • engine_name (either “solr” or “elasticsearch”)

Solr engine config example
engine_config_solr = {

    "host":"http://localhost:8983/solr/",

    "name":"osc-blog",

    "path":"./skipchunk_data",

    "engine_name":"solr"

}
Elasticsearch engine config example
engine_config_elasticsearch = {

    "host":"http://localhost:9200/",

    "name":"osc-blog",

    "path":"./skipchunk_data",

    "engine_name":"elasticsearch"

}

Skipchunk Initialization

When initializing Skipchunk, you will need to provide the constructor with the following parameters

  • engine_config (the dict containing search engine connection details)

  • spacy_model=“en_core_web_lg” (the spacy model to use to parse text)

  • minconceptlength=1 (the minimum number of words that can appear in a noun phrase)

  • maxconceptlength=3 (the maximum number of words that can appear in a noun phrase)

  • minpredicatelength=1 (the minimum number of words that can appear in a verb phrase)

  • maxpredicatelength=3 (the maximum number of words that can appear in a verb phrase)

  • minlabels=1 (the number of times a concept/predicate must appear before it is recognized and kept. The lower this number, the more concepts will be kept - so be careful with large content sets!)

  • cache_documents=False

  • cache_pickle=False

Skipchunk Methods

  • tuplize(filename=source,fields=['title','content',...]) (Produces a list of (text,document) tuples ready for processing by the enrichment.)

  • enrich(tuples) (Enriching can take a long time if you provide lots of text. Consider batching at 10k docs at a time.)

  • save (Saves to pickle)

  • load (Loads from pickle)

Graph API

After enrichment, you can then index the graph into the engine

  • index(skipchunk:Skipchunk) (Updates the knowledge graph in the search engine)

  • delete (Deletes a knowledge graph - be careful!)

After indexing, you can call these methods to get autocompleted concepts or walk the knowledge graph

  • conceptVerbConcepts(concept:str,verb:str,mincount=1,limit=100) -> list ( Accepts a verb to find the concepts appearing in the same context)

  • conceptsNearVerb(verb:str,mincount=1,limit=100) -> list ( Accepts a verb to find the concepts appearing in the same context)

  • verbsNearConcept(concept:str,mincount=1,limit=100) -> list ( Accepts a concept to find the verbs appearing in the same context)

  • suggestConcepts(prefix:str,build=False) -> list ( Suggests a list of concepts given a prefix)

  • suggestPredicates(prefix:str,build=False) -> list ( Suggests a list of predicates given a prefix)

  • summarize(mincount=1,limit=100) -> list ( Summarizes a core)

  • graph(subject:str,objects=5,branches=10) -> list ( Gets the subject-predicate-object neighborhood graph for a subject)

Credits

Developed by Max Irwin, OpenSource Connections https://opensourceconnections.com

All the blog posts contained in the example directory are copyright OpenSource Connections, and may not be used nor redistributed without permission

History

0.1.0 (2019-06-18)

  • Cookie-cutted.

0.9.0 (2020-09-25)

  • First release on PyPI.

1.0.0 (2020-12-10)

  • Stable API.

1.1.0 (2020-12-10)

  • Beta Release.

1.1.1 (2020-12-10)

  • Basic Readme doc.

1.2.2 (2020-12-14)

  • Configset path fix.

  • Static assets moved.

2.0.0 (2021-09-09)

  • SpaCy upgraded to 3.1.2.

  • Batch multiprocess processing for better throughput

2.0.1 (2021-09-09)

  • Fixed bulk operator

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skipchunk-2.0.1.tar.gz (1.3 MB view details)

Uploaded Source

Built Distribution

skipchunk-2.0.1-py2.py3-none-any.whl (251.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file skipchunk-2.0.1.tar.gz.

File metadata

  • Download URL: skipchunk-2.0.1.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200529 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.3

File hashes

Hashes for skipchunk-2.0.1.tar.gz
Algorithm Hash digest
SHA256 1931a557a16120839db8594060fd06fdd0a73873827f00e3d16720e1a9c2c0f3
MD5 897d8f8365d84c1fcb778ff5f667d429
BLAKE2b-256 bccd8d5e7fa1e3d910ac680bbe7e1038e55d4f6d3fa2684b85b369d0e4b4d470

See more details on using hashes here.

File details

Details for the file skipchunk-2.0.1-py2.py3-none-any.whl.

File metadata

  • Download URL: skipchunk-2.0.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 251.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200529 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.3

File hashes

Hashes for skipchunk-2.0.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 b35c28a208774aef9dd622ca39f6b0fb3df41ff5608e6fcbaf829fce3f4f80c6
MD5 fca9c7fd5a248631087adbcec8cd8e6f
BLAKE2b-256 a4e94b4eeafb7705aa74b22ef7deab5a360e715591e975b33b55756f981e58ef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page