Simplified analysis of sklearn datasets
Project description
The skippy
python package
Skip the boilerplate of scikit-learn machine learning examples.
Installation
pip install skippy
Usage
In a shell environment, you can run skippy
with no arguments to perform a Logistic Regression
on the digits
dataset.
This will produce a 10 x 10 confusion matrix with the Accuracy Score at the top.
You can also pass arguments to skippy at the command line.
For example,
skippy -data diabetes -type linear_model -name Lasso
# Or
skippy -d diabetes -t linear_model -n Lasso
will run a linear regression with lasso regularization (L1)
on the diabetes
dataset.
The data
argument can be any of
the following built-in scikit-learn datasets:
- Regression
boston
diabetes
- Classification
digits
iris
wine
breast_cancer
The type
and name
arguments are
referring to the model type and name from scikit-learn.
The type
is the submodule, e.g.
linear_model
naive_bayes
ensemble
svm
while the name
is the what is actually imported, e.g.
LinearRegression
GaussianNB
RandomForestRegressor
SVC
Simplify code to a single function call per step:
from sklearn.metrics import confusion_matrix, accuracy_score
import skippy as skp
data = skp.get_data('digits')
x_train, x_test, y_train, y_test = skp.split_data(data)
model = skp.get_model(model_type='ensemble',
model_name='RandomForestClassifier')
fit = model.fit(x_train, y_train)
skp.pickle_model(filename='digits_rf.pickle', model=fit)
predictions = fit.predict(x_test)
confmat = confusion_matrix(y_true=y_test, y_pred=predictions)
accuracy = accuracy_score(y_true=y_test, y_pred=predictions)
skp.confusion_matrix_plot(cm=confmat,
acc=accuracy,
filename='digits_rf.png')
Or run a whole pipeline with one function:
import skippy as skp
skp.classification(dataset='digits',
model_type='ensemble',
model_name='RandomForestClassifier',
pickle_name='digits_rf.pickle',
plot_name='digits_rf.png')
For inspiration, look at the example pipelines in the pipelines folder of the skippy repo.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file skippy-0.1.0.tar.gz
.
File metadata
- Download URL: skippy-0.1.0.tar.gz
- Upload date:
- Size: 4.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5ff4b02d5bd75ffab0eda30da10c4f7da6fb9ec216b80fc7c6f72df18a72d19a |
|
MD5 | 298ecdc5c785d6ae91a43f7e5a9706ba |
|
BLAKE2b-256 | 446a7324798624222bbc555e61ba534673764846a40f4a71cf513d32f323382f |
File details
Details for the file skippy-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: skippy-0.1.0-py3-none-any.whl
- Upload date:
- Size: 6.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a1fe46c59817f47ddf73a3b2b19f5605698601a3fad7027ce5f5a71a31f1ea75 |
|
MD5 | ff147c6b5eb8a87594e922174c7b00b4 |
|
BLAKE2b-256 | a4cb346f34fc87fab0d9aa643432dbd22d8ffe798e68ea777c081f107d8c0192 |