Skip to main content

Simplified analysis of sklearn datasets

Project description

The skippy python package

Skip the boilerplate of scikit-learn machine learning examples.

Installation

pip install skippy

Usage

Simplify code to a single function call per step:

from sklearn.metrics import confusion_matrix, accuracy_score
import skippy as skp

data = skp.get_data('digits')
x_train, x_test, y_train, y_test = skp.split_data(data)

model = skp.get_model(model_type='ensemble',
                      model_name='RandomForestClassifier')

fit = model.fit(x_train, y_train)
skp.pickle_model(filename='digits_rf.pickle', model=fit)
predictions = fit.predict(x_test)

confmat = confusion_matrix(y_true=y_test, y_pred=predictions)
accuracy = accuracy_score(y_true=y_test, y_pred=predictions)

skp.confusion_matrix_plot(cm=confmat,
                          acc=accuracy,
                          filename='digits_rf.png')

Or run a whole pipeline with one function:

import skippy as skp

skp.classification(dataset='digits',
                   model_type='ensemble',
                   model_name='RandomForestClassifier',
                   pickle_name='digits_rf.pickle',
                   plot_name='digits_rf.png')

For inspiration, look at the example pipelines in the pipelines folder of the skippy repo.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skippy-0.0.9.tar.gz (3.5 kB view hashes)

Uploaded Source

Built Distribution

skippy-0.0.9-py3-none-any.whl (5.7 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page