Simplified analysis of sklearn datasets
Project description
The skippy
python package
Skip the boilerplate of scikit-learn machine learning examples.
Installation
pip install skippy
Usage
Simplify code to a single function call per step:
from sklearn.metrics import confusion_matrix, accuracy_score
import skippy as skp
data = skp.get_data('digits')
x_train, x_test, y_train, y_test = skp.split_data(data)
model = skp.get_model(model_type='ensemble',
model_name='RandomForestClassifier')
fit = model.fit(x_train, y_train)
skp.pickle_model(filename='digits_rf.pickle', model=fit)
predictions = fit.predict(x_test)
confmat = confusion_matrix(y_true=y_test, y_pred=predictions)
accuracy = accuracy_score(y_true=y_test, y_pred=predictions)
skp.confusion_matrix_plot(cm=confmat,
acc=accuracy,
filename='digits_rf.png')
Or run a whole pipeline with one function:
import skippy as skp
skp.classification(dataset='digits',
model_type='ensemble',
model_name='RandomForestClassifier',
pickle_name='digits_rf.pickle',
plot_name='digits_rf.png')
For inspiration, look at the example pipelines in the pipelines folder of the skippy repo.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
skippy-0.0.9.tar.gz
(3.5 kB
view hashes)
Built Distribution
skippy-0.0.9-py3-none-any.whl
(5.7 kB
view hashes)