Skip to main content

Convert scikit-learn models to ONNX

Project description

Introduction

sklearn-onnx converts scikit-learn models to ONNX. Once in the ONNX format, you can use tools like ONNX Runtime for high performance scoring. All converters are tested with onnxruntime.

Documentation

Full documentation including tutorials is available at https://onnx.ai/sklearn-onnx/. Supported scikit-learn Models Last supported opset is 15.

You may also find answers in existing issues or submit a new one.

Installation

You can install from PyPi:

pip install skl2onnx

Or you can install from the source with the latest changes.

pip install git+https://github.com/onnx/sklearn-onnx.git

Contribute

We welcome contributions in the form of feedback, ideas, or code.

License

Apache License v2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skl2onnx-1.10.2.tar.gz (858.8 kB view details)

Uploaded Source

Built Distribution

skl2onnx-1.10.2-py2.py3-none-any.whl (271.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file skl2onnx-1.10.2.tar.gz.

File metadata

  • Download URL: skl2onnx-1.10.2.tar.gz
  • Upload date:
  • Size: 858.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for skl2onnx-1.10.2.tar.gz
Algorithm Hash digest
SHA256 1cc28a4e76c5f925cf20c2b9ca5e06206574cc67e8f434036ea9df9c8fe01190
MD5 0f0bdcaafa3800662659b95d076aabc8
BLAKE2b-256 504c410cb74a941ecfc49f95ea863113dabda645f2dfb4f4127b81a8c76c99e2

See more details on using hashes here.

File details

Details for the file skl2onnx-1.10.2-py2.py3-none-any.whl.

File metadata

  • Download URL: skl2onnx-1.10.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 271.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for skl2onnx-1.10.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 dcd4c8d496b661b6012fb4414ff20eb84207d43ca550fb541778e1e31724f619
MD5 cde88dc5062d3c327e271a61403085f9
BLAKE2b-256 3f2f986f628aad077f9737d277b6dbe9fed2dab92e3779cd148bdfcd557c362c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page