Skip to main content

Convert scikit-learn models to ONNX

Project description

Introduction

sklearn-onnx converts scikit-learn models to ONNX. Once in the ONNX format, you can use tools like ONNX Runtime for high performance scoring. All converters are tested with onnxruntime.

Documentation

Full documentation including tutorials is available at https://onnx.ai/sklearn-onnx/. Supported scikit-learn Models Last supported opset is 15.

You may also find answers in existing issues or submit a new one.

Installation

You can install from PyPi:

pip install skl2onnx

Or you can install from the source with the latest changes.

pip install git+https://github.com/onnx/sklearn-onnx.git

Contribute

We welcome contributions in the form of feedback, ideas, or code.

License

Apache License v2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skl2onnx-1.10.4.tar.gz (859.9 kB view details)

Uploaded Source

Built Distribution

skl2onnx-1.10.4-py2.py3-none-any.whl (274.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file skl2onnx-1.10.4.tar.gz.

File metadata

  • Download URL: skl2onnx-1.10.4.tar.gz
  • Upload date:
  • Size: 859.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for skl2onnx-1.10.4.tar.gz
Algorithm Hash digest
SHA256 6d6c0edc644da0214fa773ea4df70eaa7d55210eac5984071b4ca6a4ff04b27c
MD5 83a1558e5b031b96d7367df301553d2b
BLAKE2b-256 b3d859abada20f66d31cd3c7fbea3ad363db0031228f636674603591a2a4a460

See more details on using hashes here.

File details

Details for the file skl2onnx-1.10.4-py2.py3-none-any.whl.

File metadata

  • Download URL: skl2onnx-1.10.4-py2.py3-none-any.whl
  • Upload date:
  • Size: 274.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for skl2onnx-1.10.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 e737d21217bb2f488e8ee09993d0701f106162d3a20e69a10bba2d0d48bf84d0
MD5 230d4d741c83816e284e32e0b54b397c
BLAKE2b-256 d9b44a88948ec04b83791453d45412c06a64b8c80d6bcee5d5e181ca0bde7ddb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page