Skip to main content

Convert scikit-learn models to ONNX

Project description

Introduction

sklearn-onnx converts scikit-learn models to ONNX. Once in the ONNX format, you can use tools like ONNX Runtime for high performance scoring. All converters are tested with onnxruntime.

Documentation

Full documentation including tutorials is available at https://onnx.ai/sklearn-onnx/. Supported scikit-learn Models Last supported opset is 15.

You may also find answers in existing issues or submit a new one.

Installation

You can install from PyPi:

pip install skl2onnx

Or you can install from the source with the latest changes.

pip install git+https://github.com/onnx/sklearn-onnx.git

Contribute

We welcome contributions in the form of feedback, ideas, or code.

License

Apache License v2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skl2onnx-1.13.tar.gz (872.6 kB view details)

Uploaded Source

Built Distribution

skl2onnx-1.13-py2.py3-none-any.whl (288.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file skl2onnx-1.13.tar.gz.

File metadata

  • Download URL: skl2onnx-1.13.tar.gz
  • Upload date:
  • Size: 872.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/30.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.11.2 keyring/23.2.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for skl2onnx-1.13.tar.gz
Algorithm Hash digest
SHA256 5f352f6b9b855ffac6305a707f02c7d436f4368938ee9049092a95a3565c273d
MD5 003a2f4576340e70fb6686babfddba30
BLAKE2b-256 9beeba3e16629b434d7082cbcbb0bf92fc134c34b211b0c699b481142eeb6209

See more details on using hashes here.

File details

Details for the file skl2onnx-1.13-py2.py3-none-any.whl.

File metadata

  • Download URL: skl2onnx-1.13-py2.py3-none-any.whl
  • Upload date:
  • Size: 288.7 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/30.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.11.2 keyring/23.2.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for skl2onnx-1.13-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 51011c52d445ecef71967c67522ca7d1a57fc15576556beefeef40895b960830
MD5 5eecc330788563d184395b119bbe1bba
BLAKE2b-256 095fa1d80847987588aba1335bfa5818f6c4264d4effa2bed20c2d30672e6b27

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page