Skip to main content

Convert scikit-learn models to ONNX

Project description

Introduction

sklearn-onnx converts scikit-learn models to ONNX. Once in the ONNX format, you can use tools like ONNX Runtime for high performance scoring.

Documentation

Full documentation including tutorials is available at http://onnx.ai/sklearn-onnx/.

You may also find answers in existing issues or submit a new one.

Installation

You can install from PyPi:

pip install skl2onnx

Or you can install from the source with the latest changes.

pip install git+https://github.com/onnx/sklearn-onnx.git

If you install sklearn-onnx from its source code, you must set the environment variable ONNX_ML=1 before installing the onnx package.

Contribute

We welcome contributions in the form of feedback, ideas, or code.

License

MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skl2onnx-1.4.4.2.tar.gz (522.5 kB view details)

Uploaded Source

File details

Details for the file skl2onnx-1.4.4.2.tar.gz.

File metadata

  • Download URL: skl2onnx-1.4.4.2.tar.gz
  • Upload date:
  • Size: 522.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.7

File hashes

Hashes for skl2onnx-1.4.4.2.tar.gz
Algorithm Hash digest
SHA256 81bbf91b33128f805e9d5fc81839f5b33bacba179d1c5d4bfaa13a7a373f0d31
MD5 1d9013d52bd08d7fd05349ca9d461e1d
BLAKE2b-256 bec0ec7c340f7c3635bea5c38a6fdb2c1473e86ce0129e77d4cecdcf5bca25b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page