Skip to main content

Sklearn models hyperparameters tuning using genetic algorithms

Project description

Build Status Codecov PyPI Version Python Version

Sklearn-genetic-opt

Sklearn models hyperparameters tuning using genetic algorithms

Usage:

Install sklearn-genetic-opt

It's advised to install sklearn-genetic using a virtual env, inside the env use:

pip install sklearn-genetic-opt

Example

from sklearn_genetic import GASearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_digits
from sklearn.metrics import accuracy_score


data = load_digits() 
y = data['target']
X = data['data'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)

clf = DecisionTreeClassifier()

evolved_estimator = GASearchCV(clf,
                               cv=3,
                               scoring='accuracy',
                               population_size=16,
                               generations=30,
                               tournament_size=3,
                               elitism=True,
                               crossover_probability=0.9,
                               mutation_probability=0.05,
                               continuous_parameters={'min_weight_fraction_leaf': (0, 0.5)},
                               categorical_parameters={'criterion': ['gini', 'entropy']},
                               integer_parameters={'max_depth': (2, 20), 'max_leaf_nodes': (2, 30)},
                               encoding_length=10,
                               criteria='max',
                               n_jobs=-1)

evolved_estimator.fit(X_train,y_train)
print(evolved_estimator.best_params_)
y_predict_ga = evolved_estimator.predict(X_test)
print(accuracy_score(y_test,y_predict_ga))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sklearn-genetic-opt-0.1.1.tar.gz (8.9 kB view details)

Uploaded Source

Built Distribution

sklearn_genetic_opt-0.1.1-py3-none-any.whl (10.8 kB view details)

Uploaded Python 3

File details

Details for the file sklearn-genetic-opt-0.1.1.tar.gz.

File metadata

  • Download URL: sklearn-genetic-opt-0.1.1.tar.gz
  • Upload date:
  • Size: 8.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.8

File hashes

Hashes for sklearn-genetic-opt-0.1.1.tar.gz
Algorithm Hash digest
SHA256 bae1e366bd01f40c610b35346f913bb8fd26257c2ce2e0b445843a32e051f7fc
MD5 36910f94bffa7de49c1e42b308c601d5
BLAKE2b-256 defedcd5e7a8b8f598181d7a720dcaa920d243dbaa63744a055af57507b19c9e

See more details on using hashes here.

File details

Details for the file sklearn_genetic_opt-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: sklearn_genetic_opt-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 10.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.8

File hashes

Hashes for sklearn_genetic_opt-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ff74a42a5fde4ed4a3a16f31959ce7c220edb93a14632927cec2bd093aef66a8
MD5 7e68177f70940b2ad225d5c347692667
BLAKE2b-256 58e6b6ebfc5819f5f7590797c9316fbcf4a53641c3ccb16246564fcd2defe3bb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page