Skip to main content

Sklearn models hyperparameters tuning using evolutionary algorithms

Project description

Build Status Codecov PyPI Version Python Version

Sklearn-genetic-opt

scikit-learn models hyperparameters tuning using evolutionary algorithms.

This is meant to be an alternative from popular methods inside scikit-learn such as Grid Search and Random Grid Search.

Sklearn-genetic-opt uses evolutionary algorithms from the deap package to find the "best" set of hyperparameters that optimizes (max or min) the cross validation scores, it can be used for both regression and classification problems.

Usage:

Install sklearn-genetic-opt

It's advised to install sklearn-genetic using a virtual env, inside the env use:

pip install sklearn-genetic-opt

Example

from sklearn_genetic import GASearchCV
from sklearn_genetic.utils import plot_fitness_evolution
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_digits
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt


data = load_digits() 
y = data['target']
X = data['data'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)

clf = DecisionTreeClassifier()

evolved_estimator = GASearchCV(estimator=clf,
                               cv=3,
                               scoring='accuracy',
                               population_size=25,
                               generations=35,
                               tournament_size=3,
                               elitism=True,
                               crossover_probability=0.8,
                               mutation_probability=0.1,
                               continuous_parameters={'min_weight_fraction_leaf': (0, 0.5)},
                               categorical_parameters={'criterion': ['gini', 'entropy']},
                               integer_parameters={'max_depth': (2, 25), 'max_leaf_nodes': (2, 35)},
                               criteria='max',
                               algorithm='eaMuPlusLambda',
                               n_jobs=-1,
                               verbose=True,
                               keep_top_k=4)

# Train and optimize the estimator 
evolved_estimator.fit(X_train,y_train)
# Best parameters found
print(evolved_estimator.best_params)
# Use the model fitted with the best parameters
y_predict_ga = evolved_estimator.predict(X_test)
print(accuracy_score(y_test,y_predict_ga))

# See the evolution of the optimization per generation
plot_fitness_evolution(evolved_estimator)
plt.show()

# Saved metadata for further analysis
print("Stats achieved in each generation: ", evolved_estimator.history)
print("Parameters and cv scores in each iteration: ", evolved_estimator.logbook)
print("Best k solutions: ", evolved_estimator.hof)

Result

demo

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sklearn-genetic-opt-0.2.1.tar.gz (9.4 kB view details)

Uploaded Source

Built Distribution

sklearn_genetic_opt-0.2.1-py3-none-any.whl (10.9 kB view details)

Uploaded Python 3

File details

Details for the file sklearn-genetic-opt-0.2.1.tar.gz.

File metadata

  • Download URL: sklearn-genetic-opt-0.2.1.tar.gz
  • Upload date:
  • Size: 9.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.8

File hashes

Hashes for sklearn-genetic-opt-0.2.1.tar.gz
Algorithm Hash digest
SHA256 5dbdb3b80f9c1d3910f51f67ea8c9f779ce3263ebd67d439f566e4cfef4e7196
MD5 173ca3b1b4324f1650b3bf82019d43b1
BLAKE2b-256 33e4079d70645fbbebd9bbdb934fce1c50d48e7e06378f1735a671674a8bb669

See more details on using hashes here.

File details

Details for the file sklearn_genetic_opt-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: sklearn_genetic_opt-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 10.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.8

File hashes

Hashes for sklearn_genetic_opt-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 53cb0f8f029b4e41b980bd52815a1647f7d3cc7b1e29ee6fa5eed8a9d94e66ee
MD5 426d11ffca300459f28eea1f16ee151f
BLAKE2b-256 c9ae928de1d5c8fcf7c746f0fc03045bf80d8d83b7da4b6f3c245423e77b570a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page