Skip to main content

Scikit-lean models hyperparameters tuning, using evolutionary algorithms

Project description

Tests Codecov PythonVersion PyPi Docs

https://github.com/rodrigo-arenas/Sklearn-genetic-opt/blob/master/docs/logo.png?raw=true

Sklearn-genetic-opt

scikit-learn models hyperparameters tuning, using evolutionary algorithms.

This is meant to be an alternative from popular methods inside scikit-learn such as Grid Search and Randomized Grid Search.

Sklearn-genetic-opt uses evolutionary algorithms from the deap package to choose set of hyperparameters that optimizes (max or min) the cross validation scores, it can be used for both regression and classification problems.

Documentation is available here

Sampled distribution of hyperparameters:

https://github.com/rodrigo-arenas/Sklearn-genetic-opt/blob/master/demo/images/density.png?raw=true

Optimization progress in a regression problem:

https://github.com/rodrigo-arenas/Sklearn-genetic-opt/blob/master/demo/images/fitness.png?raw=true

Main Features:

  • GASearchCV: Principal class of the package, holds the evolutionary cross validation optimization routine

  • Algorithms: Set of different evolutionary algorithms to use as optimization procedure

  • Callbacks: Custom evaluation strategies to generate Early Stopping rules

  • Plots: Generate pre-define plots to understand the optimization process

  • MLflow: Build-in integration with mlflow to log all the hyperparameters and their cv-score

Usage:

Install sklearn-genetic-opt

It’s advised to install sklearn-genetic using a virtual env, inside the env use:

pip install sklearn-genetic-opt

Example

from sklearn_genetic import GASearchCV
from sklearn_genetic.space import Continuous, Categorical, Integer
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split, StratifiedKFold
from sklearn.datasets import load_digits
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt

data = load_digits()
n_samples = len(data.images)
X = data.images.reshape((n_samples, -1))
y = data['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)

clf = RandomForestClassifier()

param_grid = {'min_weight_fraction_leaf': Continuous(0.01, 0.5, distribution='log-uniform'),
              'bootstrap': Categorical([True, False]),
              'max_depth': Integer(2, 30),
              'max_leaf_nodes': Integer(2, 35),
              'n_estimators': Integer(100, 300)}

cv = StratifiedKFold(n_splits=3, shuffle=True)

evolved_estimator = GASearchCV(estimator=clf,
                               cv=cv,
                               scoring='accuracy',
                               population_size=10,
                               generations=35,
                               param_grid=param_grid,
                               n_jobs=-1,
                               verbose=True,
                               keep_top_k=4)

# Train and optimize the estimator
evolved_estimator.fit(X_train, y_train)
# Best parameters found
print(evolved_estimator.best_params_)
# Use the model fitted with the best parameters
y_predict_ga = evolved_estimator.predict(X_test)
print(accuracy_score(y_test, y_predict_ga))

# Saved metadata for further analysis
print("Stats achieved in each generation: ", evolved_estimator.history)
print("Best k solutions: ", evolved_estimator.hof)

Results

Log controlled by verbosity

https://github.com/rodrigo-arenas/Sklearn-genetic-opt/blob/master/demo/images/log.JPG?raw=true

Changelog

See the changelog for notes on the changes of Sklearn-genetic-opt

Source code

You can check the latest development version with the command:

git clone https://github.com/rodrigo-arenas/Sklearn-genetic-opt.git

Contributing

Contributions are more than welcome! There are lots of opportunities on the on going project, so please get in touch if you would like to help out. Also check the Contribution guide

Testing

After installation, you can launch the test suite from outside the source directory:

pytest sklearn_genetic

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sklearn-genetic-opt-0.5.0.tar.gz (20.9 kB view details)

Uploaded Source

Built Distribution

sklearn_genetic_opt-0.5.0-py3-none-any.whl (27.3 kB view details)

Uploaded Python 3

File details

Details for the file sklearn-genetic-opt-0.5.0.tar.gz.

File metadata

  • Download URL: sklearn-genetic-opt-0.5.0.tar.gz
  • Upload date:
  • Size: 20.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.10

File hashes

Hashes for sklearn-genetic-opt-0.5.0.tar.gz
Algorithm Hash digest
SHA256 994e04ba8755c201e490b67c0d1666dca653a963faf8d25140490f8288e23bed
MD5 8c4927f42742692c17938989dfe38419
BLAKE2b-256 8cdaa0f271b84c8d41e08aefe2f46dbfda7cf2793b88c1dd080dfb4b65fa88e4

See more details on using hashes here.

File details

Details for the file sklearn_genetic_opt-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: sklearn_genetic_opt-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 27.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.10

File hashes

Hashes for sklearn_genetic_opt-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 20b1365b1a31a77710cd61a41e8dd96100198b8fb59389bdb3e523a00d30d20b
MD5 fa05a7351e3a2c80eb10ddd47a891e3b
BLAKE2b-256 2ce565ab3d590af252b1f40f147178b6dcb41aaafdf99a1e720104b181033d65

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page