Skip to main content

scikit-learn instrumentation tooling

Project description

actions rtd pypi pyversions

Generalized instrumentation tooling for scikit-learn models. sklearn_instrumentation allows instrumenting the sklearn package and any scikit-learn compatible packages with estimators and transformers inheriting from sklearn.base.BaseEstimator.

Instrumentation applies decorators to methods of BaseEstimator-derived classes or instances. By default the instrumentor applies instrumentation to the following methods (except when they are properties of instances):

  • fit

  • fit_transform

  • predict

  • predict_log_proba

  • predict_proba

  • transform

  • _fit

  • _fit_transform

  • _predict

  • _predict_log_proba

  • _predict_proba

  • _transform

sklearn-instrumentation supports instrumentation of full sklearn-compatible packages, as well as recursive instrumentation of models (metaestimators like Pipeline, or even single estimators like RandomForestClassifier)

Installation

The sklearn-instrumentation package is available on pypi and can be installed using pip

pip install sklearn-instrumentation

Package instrumentation

Instrument any sklearn compatible package that has BaseEstimator-derived classes.

from sklearn_instrumentation import SklearnInstrumentor

instrumentor = SklearnInstrumentor(instrument=my_instrument)
instrumentor.instrument_packages(["sklearn", "xgboost", "lightgbm"])

Full example:

import logging

from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
from sklearn.ensemble import RandomForestClassifier
from sklearn.pipeline import FeatureUnion
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

from sklearn_instrumentation import SklearnInstrumentor
from sklearn_instrumentation.instruments.logging import TimeElapsedLogger

logging.basicConfig(level=logging.INFO)

# Create an instrumentor and instrument sklearn
instrumentor = SklearnInstrumentor(instrument=TimeElapsedLogger())
instrumentor.instrument_packages(["sklearn"])

# Create a toy model for classification
ss = StandardScaler()
pca = PCA(n_components=3)
rf = RandomForestClassifier()
classification_model = Pipeline(
    steps=[
        (
            "fu",
            FeatureUnion(
                transformer_list=[
                    ("ss", ss),
                    ("pca", pca),
                ]
            ),
        ),
        ("rf", rf),
    ]
)
X, y = load_iris(return_X_y=True)

# Observe logging
classification_model.fit(X, y)
# INFO:sklearn_instrumentation.instruments.logging:Pipeline.fit starting.
# INFO:sklearn_instrumentation.instruments.logging:Pipeline._fit starting.
# INFO:sklearn_instrumentation.instruments.logging:StandardScaler.fit starting.
# INFO:sklearn_instrumentation.instruments.logging:StandardScaler.fit elapsed time: 0.0006406307220458984 seconds
# INFO:sklearn_instrumentation.instruments.logging:StandardScaler.transform starting.
# INFO:sklearn_instrumentation.instruments.logging:StandardScaler.transform elapsed time: 0.0001430511474609375 seconds
# INFO:sklearn_instrumentation.instruments.logging:PCA._fit starting.
# INFO:sklearn_instrumentation.instruments.logging:PCA._fit elapsed time: 0.0006711483001708984 seconds
# INFO:sklearn_instrumentation.instruments.logging:Pipeline._fit elapsed time: 0.0026731491088867188 seconds
# INFO:sklearn_instrumentation.instruments.logging:BaseForest.fit starting.
# INFO:sklearn_instrumentation.instruments.logging:BaseForest.fit elapsed time: 0.1768970489501953 seconds
# INFO:sklearn_instrumentation.instruments.logging:Pipeline.fit elapsed time: 0.17983102798461914 seconds

# Observe logging
classification_model.predict(X)
# INFO:sklearn_instrumentation.instruments.logging:Pipeline.predict starting.
# INFO:sklearn_instrumentation.instruments.logging:FeatureUnion.transform starting.
# INFO:sklearn_instrumentation.instruments.logging:StandardScaler.transform starting.
# INFO:sklearn_instrumentation.instruments.logging:StandardScaler.transform elapsed time: 0.00024509429931640625 seconds
# INFO:sklearn_instrumentation.instruments.logging:_BasePCA.transform starting.
# INFO:sklearn_instrumentation.instruments.logging:_BasePCA.transform elapsed time: 0.0002181529998779297 seconds
# INFO:sklearn_instrumentation.instruments.logging:FeatureUnion.transform elapsed time: 0.0012080669403076172 seconds
# INFO:sklearn_instrumentation.instruments.logging:ForestClassifier.predict starting.
# INFO:sklearn_instrumentation.instruments.logging:ForestClassifier.predict_proba starting.
# INFO:sklearn_instrumentation.instruments.logging:ForestClassifier.predict_proba elapsed time: 0.013531208038330078 seconds
# INFO:sklearn_instrumentation.instruments.logging:ForestClassifier.predict elapsed time: 0.013692140579223633 seconds
# INFO:sklearn_instrumentation.instruments.logging:Pipeline.predict elapsed time: 0.015219926834106445 seconds

# Remove instrumentation
instrumentor.uninstrument_packages(["sklearn"])

# Observe no logging
classification_model.predict(X)

Instance instrumentation

Instrument any sklearn compatible trained estimator or metaestimator.

from sklearn_instrumentation import SklearnInstrumentor

instrumentor = SklearnInstrumentor(instrument=my_instrument)
instrumentor.instrument_instance(estimator=my_ml_pipeline)

Example:

import logging

from sklearn.datasets import load_iris
from sklearn_instrumentation import SklearnInstrumentor
from sklearn_instrumentation.instruments.logging import TimeElapsedLogger
from sklearn.ensemble import RandomForestClassifier

logging.basicConfig(level=logging.INFO)

# Train a classifier
X, y = load_iris(return_X_y=True)
rf = RandomForestClassifier()

rf.fit(X, y)

# Create an instrumentor which decorates BaseEstimator methods with
# logging output when entering and exiting methods, with time elapsed logged
# on exit.
instrumentor = SklearnInstrumentor(instrument=TimeElapsedLogger())

# Apply the decorator to all BaseEstimators in each of these libraries
instrumentor.instrument_instance(rf)

# Observe the logging output
rf.predict(X)
# INFO:sklearn_instrumentation.instruments.logging:ForestClassifier.predict starting.
# INFO:sklearn_instrumentation.instruments.logging:ForestClassifier.predict_proba starting.
# INFO:sklearn_instrumentation.instruments.logging:ForestClassifier.predict_proba elapsed time: 0.014165163040161133 seconds
# INFO:sklearn_instrumentation.instruments.logging:ForestClassifier.predict elapsed time: 0.014327764511108398 seconds

# Remove the decorator from all BaseEstimators in each of these libraries
instrumentor.uninstrument_instance(rf)

# No more logging
rf.predict(X)

Instance class instrumentation

During fitting, some metaestimators will copy estimator instances using scikit-learn’s clone function. This results in cloned fitted estimators not having instrumentation. To get around this we can instrument the classes rather than the instances.

from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
from sklearn.ensemble import RandomForestClassifier
from sklearn.pipeline import FeatureUnion
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

from sklearn_instrumentation import SklearnInstrumentor
from sklearn_instrumentation.instruments.logging import TimeElapsedLogger

logging.basicConfig(level=logging.INFO)

ss = StandardScaler()
pca = PCA(n_components=3)
rf = RandomForestClassifier()
classification_model = Pipeline(
    steps=[
        (
            "fu",
            FeatureUnion(
                transformer_list=[
                    ("ss", ss),
                    ("pca", pca),
                ]
            ),
        ),
        ("rf", rf),
    ]
)
X, y = load_iris(return_X_y=True)

instrumentor = SklearnInstrumentor(instrument=TimeElapsedLogger())
instrumentor.instrument_instance_classes(classification_model)

classification_model.fit(X, y)
# INFO:sklearn_instrumentation.instruments.logging:Pipeline.fit starting.
# INFO:sklearn_instrumentation.instruments.logging:Pipeline.fit starting.
# INFO:sklearn_instrumentation.instruments.logging:Pipeline._fit starting.
# INFO:sklearn_instrumentation.instruments.logging:Pipeline._fit starting.
# INFO:sklearn_instrumentation.instruments.logging:StandardScaler.fit starting.
# INFO:sklearn_instrumentation.instruments.logging:StandardScaler.fit starting.
# INFO:sklearn_instrumentation.instruments.logging:StandardScaler.fit elapsed time: 0.0006749629974365234 seconds
# INFO:sklearn_instrumentation.instruments.logging:StandardScaler.fit elapsed time: 0.0007731914520263672 seconds
# INFO:sklearn_instrumentation.instruments.logging:StandardScaler.transform starting.
# INFO:sklearn_instrumentation.instruments.logging:StandardScaler.transform starting.
# INFO:sklearn_instrumentation.instruments.logging:StandardScaler.transform elapsed time: 0.00016427040100097656 seconds
# INFO:sklearn_instrumentation.instruments.logging:StandardScaler.transform elapsed time: 0.0002810955047607422 seconds
# INFO:sklearn_instrumentation.instruments.logging:PCA._fit starting.
# INFO:sklearn_instrumentation.instruments.logging:PCA._fit starting.
# INFO:sklearn_instrumentation.instruments.logging:PCA._fit elapsed time: 0.0004239082336425781 seconds
# INFO:sklearn_instrumentation.instruments.logging:PCA._fit elapsed time: 0.0005612373352050781 seconds
# INFO:sklearn_instrumentation.instruments.logging:Pipeline._fit elapsed time: 0.002705097198486328 seconds
# INFO:sklearn_instrumentation.instruments.logging:Pipeline._fit elapsed time: 0.002802133560180664 seconds
# INFO:sklearn_instrumentation.instruments.logging:BaseForest.fit starting.
# INFO:sklearn_instrumentation.instruments.logging:BaseForest.fit starting.
# INFO:sklearn_instrumentation.instruments.logging:BaseForest.fit elapsed time: 0.16085195541381836 seconds
# INFO:sklearn_instrumentation.instruments.logging:BaseForest.fit elapsed time: 0.16097569465637207 seconds
# INFO:sklearn_instrumentation.instruments.logging:Pipeline.fit elapsed time: 0.1639721393585205 seconds
# INFO:sklearn_instrumentation.instruments.logging:Pipeline.fit elapsed time: 0.16404390335083008 seconds
classification_model.predict(X)
# INFO:sklearn_instrumentation.instruments.logging:Pipeline.predict starting.
# INFO:sklearn_instrumentation.instruments.logging:Pipeline.predict starting.
# INFO:sklearn_instrumentation.instruments.logging:FeatureUnion.transform starting.
# INFO:sklearn_instrumentation.instruments.logging:FeatureUnion.transform starting.
# INFO:sklearn_instrumentation.instruments.logging:StandardScaler.transform starting.
# INFO:sklearn_instrumentation.instruments.logging:StandardScaler.transform starting.
# INFO:sklearn_instrumentation.instruments.logging:StandardScaler.transform elapsed time: 0.0001049041748046875 seconds
# INFO:sklearn_instrumentation.instruments.logging:StandardScaler.transform elapsed time: 0.00017309188842773438 seconds
# INFO:sklearn_instrumentation.instruments.logging:_BasePCA.transform starting.
# INFO:sklearn_instrumentation.instruments.logging:_BasePCA.transform starting.
# INFO:sklearn_instrumentation.instruments.logging:_BasePCA.transform elapsed time: 0.0001690387725830078 seconds
# INFO:sklearn_instrumentation.instruments.logging:_BasePCA.transform elapsed time: 0.00023698806762695312 seconds
# INFO:sklearn_instrumentation.instruments.logging:FeatureUnion.transform elapsed time: 0.0008630752563476562 seconds
# INFO:sklearn_instrumentation.instruments.logging:FeatureUnion.transform elapsed time: 0.0009222030639648438 seconds
# INFO:sklearn_instrumentation.instruments.logging:ForestClassifier.predict starting.
# INFO:sklearn_instrumentation.instruments.logging:ForestClassifier.predict starting.
# INFO:sklearn_instrumentation.instruments.logging:ForestClassifier.predict_proba starting.
# INFO:sklearn_instrumentation.instruments.logging:ForestClassifier.predict_proba starting.
# INFO:sklearn_instrumentation.instruments.logging:ForestClassifier.predict_proba elapsed time: 0.01138925552368164 seconds
# INFO:sklearn_instrumentation.instruments.logging:ForestClassifier.predict_proba elapsed time: 0.011497974395751953 seconds
# INFO:sklearn_instrumentation.instruments.logging:ForestClassifier.predict elapsed time: 0.011577844619750977 seconds
# INFO:sklearn_instrumentation.instruments.logging:ForestClassifier.predict elapsed time: 0.011635780334472656 seconds
# INFO:sklearn_instrumentation.instruments.logging:Pipeline.predict elapsed time: 0.012682199478149414 seconds
# INFO:sklearn_instrumentation.instruments.logging:Pipeline.predict elapsed time: 0.012733936309814453 seconds

instrumentor.uninstrument_instance_classes(classification_model)

classification_model.predict(X)

Instruments

The package comes with a handful of instruments which log information about X or timing of execution. You can create your own instrument just by creating a decorator, following this pattern

from functools import wraps


def my_instrumentation(estimator, func, **dkwargs):
    """Wrap an estimator method with instrumentation.

    :param obj: The class or instance on which to apply instrumentation
    :param func: The method to be instrumented.
    :param dkwargs: Decorator kwargs, which can be passed to the
        decorator at decoration time. For estimator instrumentation
        this allows different parametrizations for each ml model.
    """
    @wraps(func)
    def wrapper(*args, **kwargs):
        """Wrapping function.

        :param args: The args passed to methods, typically
            just ``X`` and/or ``y``
        :param kwargs: The kwargs passed to methods, usually
            weights or other params
        """
        # Code goes here before execution of the estimator method
        retval = func(*args, **kwargs)
        # Code goes here after execution of the estimator method
        return retval

    return wrapper

To create a stateful instrument, use a class with the __call__ method for implementing the decorator:

from functools import wraps

from sklearn_instrumentation.instruments.base import BaseInstrument


class MyInstrument(BaseInstrument)

    def __init__(self, *args, **kwargs):
        # handle any statefulness here
        pass

    def __call__(self, estimator, func, **dkwargs):
        """Wrap an estimator method with instrumentation.

        :param obj: The class or instance on which to apply instrumentation
        :param func: The method to be instrumented.
        :param dkwargs: Decorator kwargs, which can be passed to the
            decorator at decoration time. For estimator instrumentation
            this allows different parametrizations for each ml model.
        """
        @wraps(func)
        def wrapper(*args, **kwargs):
            """Wrapping function.

            :param args: The args passed to methods, typically
                just ``X`` and/or ``y``
            :param kwargs: The kwargs passed to methods, usually
                weights or other params
            """
            # Code goes here before execution of the estimator method
            retval = func(*args, **kwargs)
            # Code goes here after execution of the estimator method
            return retval

        return wrapper

To pass kwargs for different ml models:

instrumentor = SklearnInstrumentor(instrument=my_instrument)

instrumentor.instrument_instance(estimator=ml_model_1, instrument_kwargs={"name": "awesome_model"})
instrumentor.instrument_instance(estimator=ml_model_2, instrument_kwargs={"name": "better_model"})

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sklearn-instrumentation-0.13.0.tar.gz (21.7 kB view details)

Uploaded Source

Built Distribution

sklearn_instrumentation-0.13.0-py3-none-any.whl (27.4 kB view details)

Uploaded Python 3

File details

Details for the file sklearn-instrumentation-0.13.0.tar.gz.

File metadata

  • Download URL: sklearn-instrumentation-0.13.0.tar.gz
  • Upload date:
  • Size: 21.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.11 CPython/3.8.2 Darwin/20.1.0

File hashes

Hashes for sklearn-instrumentation-0.13.0.tar.gz
Algorithm Hash digest
SHA256 7fddb460b68a6c0eea05fcbe7ed17c8ba92afeedd4da395a7a09829ab62011ce
MD5 ce5ffd77cae6bab62f12e3c31302c4da
BLAKE2b-256 7cc5e0a53abc272cf576aaf0c968c6ba68bc0e1be9da0f949c4384ec04e6693b

See more details on using hashes here.

File details

Details for the file sklearn_instrumentation-0.13.0-py3-none-any.whl.

File metadata

File hashes

Hashes for sklearn_instrumentation-0.13.0-py3-none-any.whl
Algorithm Hash digest
SHA256 994d4aea6356f7124d891b1cf2a38611db5d376958ec2ed57b735a0c0a788ada
MD5 9c1cbf917b93e20a8836516bc62922d3
BLAKE2b-256 e913845f59b1cb56ca8a62b94a56f9cacb0cff163ab4602f6321b1802e8eb2ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page