Skip to main content

Wraps sklearn linear_model regression functions to allow Drop1, Add1, and VIF calculations

Project description

SKLearn Linear Model Modification

This class should act exactly like sklearn linear model to solve regression problems with the benefit of being able to use drop1 and add1 based on AIC.

Installation

Run the following to install:

pip install sklearn_linear_model_modification

Usage

import pandas as pd
from sklearn_linear_model_modification import LinearRegression, Add1LinearRegression, Drop1LinearRegression
from sklearn_linear_model_modification import Lasso, Add1Lasso, Drop1Lasso
from sklearn_linear_model_modification import ElasticNet, Add1ElasticNet, Drop1ElasticNet
from sklearn_linear_model_modification import Ridge, Add1Ridge, Drop1Ridge

def load_Xy():
    data = load_boston()
    X = pd.DataFrame( data['data'], columns=data['feature_names'] )
    y = data['target']
    return X, y



X, y = load_Xy()

lmod = Ridge()
lmod.fit(X, y)

lmod = Lasso()
lmod.fit(X, y)

lmod = ElasticNet()
lmod.fit(X, y)

lmod = LinearRegression()
lmod.fit(X, y)


lmod = Add1Ridge()
lmod.fit(X, y)

lmod = Add1Lasso()
lmod.fit(X, y)

lmod = Add1ElasticNet()
lmod.fit(X, y)

lmod = Add1LinearRegression()
lmod.fit(X, y)

lmod = Drop1Ridge()
lmod.fit(X, y)

lmod = Drop1Lasso()
lmod.fit(X, y)

lmod = Drop1ElasticNet()
lmod.fit(X, y)

lmod = Drop1LinearRegression()
lmod.fit(X, y)

Development sklearn_linear_model_modification

To install sklearn_linear_model_modification, along with the tools you need to develop and run tests, run the following in your virtualend:

$ pip install -e .[dev]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file sklearn_linear_model_modification-0.0.11.tar.gz.

File metadata

  • Download URL: sklearn_linear_model_modification-0.0.11.tar.gz
  • Upload date:
  • Size: 5.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for sklearn_linear_model_modification-0.0.11.tar.gz
Algorithm Hash digest
SHA256 842f7cbbf503656164ff179d012eed2f3427bf5acddc5c6b34255c2a735d3f9f
MD5 caf026f1aaeffffc48ee8a0ec7eafc31
BLAKE2b-256 6e1172735175183daf5eaf4817b61ba2f2b28163117f9f329159865b0677822b

See more details on using hashes here.

File details

Details for the file sklearn_linear_model_modification-0.0.11-py3-none-any.whl.

File metadata

  • Download URL: sklearn_linear_model_modification-0.0.11-py3-none-any.whl
  • Upload date:
  • Size: 7.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for sklearn_linear_model_modification-0.0.11-py3-none-any.whl
Algorithm Hash digest
SHA256 4440a0a10958c250fb76e2908e5852302b4ad1350222293de6aba7165e5b428e
MD5 f0c54def3ba681310e9a9b28fcaac61d
BLAKE2b-256 cf7f12a2e3638966658dfe7e8066d443811d502e4b0e8124f2032454c6e8cde0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page