Wraps sklearn linear_model regression functions to allow Drop1, Add1, and VIF calculations
Project description
SKLearn Linear Model Modification
This class should act exactly like sklearn linear model to solve regression problems with the benefit of being able to use drop1 and add1 based on AIC.
Installation
Run the following to install:
pip install sklearn_linear_model_modification
Usage
import pandas as pd
from sklearn_linear_model_modification.linear_model import LinearRegression, Add1LinearRegression, Drop1LinearRegression
from sklearn_linear_model_modification.linear_model import Lasso, Add1Lasso, Drop1Lasso
from sklearn_linear_model_modification.linear_model import ElasticNet, Add1ElasticNet, Drop1ElasticNet
from sklearn_linear_model_modification.linear_model import Ridge, Add1Ridge, Drop1Ridge
def load_Xy():
data = load_boston()
X = pd.DataFrame( data['data'], columns=data['feature_names'] )
y = data['target']
return X, y
X, y = load_Xy()
lmod = Ridge()
lmod.fit(X, y)
lmod = Lasso()
lmod.fit(X, y)
lmod = ElasticNet()
lmod.fit(X, y)
lmod = LinearRegression()
lmod.fit(X, y)
lmod = Add1Ridge()
lmod.fit(X, y)
lmod = Add1Lasso()
lmod.fit(X, y)
lmod = Add1ElasticNet()
lmod.fit(X, y)
lmod = Add1LinearRegression()
lmod.fit(X, y)
lmod = Drop1Ridge()
lmod.fit(X, y)
lmod = Drop1Lasso()
lmod.fit(X, y)
lmod = Drop1ElasticNet()
lmod.fit(X, y)
lmod = Drop1LinearRegression()
lmod.fit(X, y)
Development sklearn_linear_model_modification
To install sklearn_linear_model_modification, along with the tools you need to develop and run tests, run the following in your virtualend:
$ pip install -e .[dev]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file sklearn_linear_model_modification-0.0.1.tar.gz
.
File metadata
- Download URL: sklearn_linear_model_modification-0.0.1.tar.gz
- Upload date:
- Size: 5.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9e39c201511c93429b64663f46c5f80fb956a641f18e9856719eb8faf40e1e5c |
|
MD5 | 1ff4ecd5b58fe63344b5a003f11111e1 |
|
BLAKE2b-256 | 2e5317a41141ae61cf72f2292838cd8860448d8191068f66cba6a2dce29523e8 |
File details
Details for the file sklearn_linear_model_modification-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: sklearn_linear_model_modification-0.0.1-py3-none-any.whl
- Upload date:
- Size: 4.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6d19aadf4eb87dec94a0fe514f143daf14b218d608f913d2e684ffec8aaad2eb |
|
MD5 | 6f4527cd9e48895fb2617fcde1e4fb06 |
|
BLAKE2b-256 | 0f135ddf9b6add99a4e9ca2dbdf1103cb4a591abaed65d2b411570db49ca7f18 |