Skip to main content

Wraps sklearn linear_model regression functions to allow Drop1, Add1, and VIF calculations

Project description

SKLearn Linear Model Modification

This class should act exactly like sklearn linear model to solve regression problems with the benefit of being able to use drop1 and add1 based on AIC.

Installation

Run the following to install:

pip install sklearn_linear_model_modification

Usage

import pandas as pd
from sklearn_linear_model_modification import LinearRegression, Add1LinearRegression, Drop1LinearRegression
from sklearn_linear_model_modification import Lasso, Add1Lasso, Drop1Lasso
from sklearn_linear_model_modification import ElasticNet, Add1ElasticNet, Drop1ElasticNet
from sklearn_linear_model_modification import Ridge, Add1Ridge, Drop1Ridge

def load_Xy():
    data = load_boston()
    X = pd.DataFrame( data['data'], columns=data['feature_names'] )
    y = data['target']
    return X, y



X, y = load_Xy()

lmod = Ridge()
lmod.fit(X, y)

lmod = Lasso()
lmod.fit(X, y)

lmod = ElasticNet()
lmod.fit(X, y)

lmod = LinearRegression()
lmod.fit(X, y)


lmod = Add1Ridge()
lmod.fit(X, y)

lmod = Add1Lasso()
lmod.fit(X, y)

lmod = Add1ElasticNet()
lmod.fit(X, y)

lmod = Add1LinearRegression()
lmod.fit(X, y)

lmod = Drop1Ridge()
lmod.fit(X, y)

lmod = Drop1Lasso()
lmod.fit(X, y)

lmod = Drop1ElasticNet()
lmod.fit(X, y)

lmod = Drop1LinearRegression()
lmod.fit(X, y)

Development sklearn_linear_model_modification

To install sklearn_linear_model_modification, along with the tools you need to develop and run tests, run the following in your virtualend:

$ pip install -e .[dev]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file sklearn_linear_model_modification-0.0.4.tar.gz.

File metadata

  • Download URL: sklearn_linear_model_modification-0.0.4.tar.gz
  • Upload date:
  • Size: 4.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for sklearn_linear_model_modification-0.0.4.tar.gz
Algorithm Hash digest
SHA256 83a064cad3d5248a219c32485634ee84e299497a3f1d36c835ab7818730c2f07
MD5 acd125884720106948de348a31ada49f
BLAKE2b-256 4c373e81060f4193dc356e739effd08ef0bb7e20e0d02bbd48398efd6de6c998

See more details on using hashes here.

File details

Details for the file sklearn_linear_model_modification-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: sklearn_linear_model_modification-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 6.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for sklearn_linear_model_modification-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 bdad998f9b17123b0f4118ba16a2e078efb42208262e81ab051c70fa70aa49e4
MD5 63fb1706b91200a16a5b2d9b3691c0bf
BLAKE2b-256 a5e62c45e1fce5d1464d3cd55c25aad6b919a14d94a52e98fc09483b92245394

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page