Skip to main content

Wraps sklearn linear_model regression functions to allow Drop1, Add1, and VIF calculations

Project description

SKLearn Linear Model Modification

This class should act exactly like sklearn linear model to solve regression problems with the benefit of being able to use drop1 and add1 based on AIC.

Installation

Run the following to install:

pip install sklearn_linear_model_modification

Usage

import pandas as pd
from sklearn_linear_model_modification import LinearRegression, Add1LinearRegression, Drop1LinearRegression
from sklearn_linear_model_modification import Lasso, Add1Lasso, Drop1Lasso
from sklearn_linear_model_modification import ElasticNet, Add1ElasticNet, Drop1ElasticNet
from sklearn_linear_model_modification import Ridge, Add1Ridge, Drop1Ridge

def load_Xy():
    data = load_boston()
    X = pd.DataFrame( data['data'], columns=data['feature_names'] )
    y = data['target']
    return X, y



X, y = load_Xy()

lmod = Ridge()
lmod.fit(X, y)

lmod = Lasso()
lmod.fit(X, y)

lmod = ElasticNet()
lmod.fit(X, y)

lmod = LinearRegression()
lmod.fit(X, y)


lmod = Add1Ridge()
lmod.fit(X, y)

lmod = Add1Lasso()
lmod.fit(X, y)

lmod = Add1ElasticNet()
lmod.fit(X, y)

lmod = Add1LinearRegression()
lmod.fit(X, y)

lmod = Drop1Ridge()
lmod.fit(X, y)

lmod = Drop1Lasso()
lmod.fit(X, y)

lmod = Drop1ElasticNet()
lmod.fit(X, y)

lmod = Drop1LinearRegression()
lmod.fit(X, y)

Development sklearn_linear_model_modification

To install sklearn_linear_model_modification, along with the tools you need to develop and run tests, run the following in your virtualend:

$ pip install -e .[dev]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file sklearn_linear_model_modification-0.0.7.tar.gz.

File metadata

  • Download URL: sklearn_linear_model_modification-0.0.7.tar.gz
  • Upload date:
  • Size: 5.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for sklearn_linear_model_modification-0.0.7.tar.gz
Algorithm Hash digest
SHA256 edd1ded704dc6f7163266d041246f20c1eb9b6b732cdb00d1223889d65e572a0
MD5 2fa827a4c2d7c2c41a8dade9853eff75
BLAKE2b-256 8e8c4cc7a19a58557d607943d54676fd62421fe1530d38aff6124c2931870b9a

See more details on using hashes here.

File details

Details for the file sklearn_linear_model_modification-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: sklearn_linear_model_modification-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 6.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for sklearn_linear_model_modification-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 5f57275a62c8801e3f78cf99263b8ac3e3c71aa02f225d4cd22949ea46e77357
MD5 30c34f694304c3da28b7fa264bddb89f
BLAKE2b-256 3f9f18ee2873ac24b03308cacaa61c439cb6bca948711fc404ee6dde2ad78068

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page