Skip to main content

Wraps sklearn linear_model regression functions to allow Drop1, Add1, and VIF calculations

Project description

SKLearn Linear Model Modification

This class should act exactly like sklearn linear model to solve regression problems with the benefit of being able to use drop1 and add1 based on AIC.

Installation

Run the following to install:

pip install sklearn_linear_model_modification

Usage

import pandas as pd
from sklearn_linear_model_modification import LinearRegression, Add1LinearRegression, Drop1LinearRegression
from sklearn_linear_model_modification import Lasso, Add1Lasso, Drop1Lasso
from sklearn_linear_model_modification import ElasticNet, Add1ElasticNet, Drop1ElasticNet
from sklearn_linear_model_modification import Ridge, Add1Ridge, Drop1Ridge

def load_Xy():
    data = load_boston()
    X = pd.DataFrame( data['data'], columns=data['feature_names'] )
    y = data['target']
    return X, y



X, y = load_Xy()

lmod = Ridge()
lmod.fit(X, y)

lmod = Lasso()
lmod.fit(X, y)

lmod = ElasticNet()
lmod.fit(X, y)

lmod = LinearRegression()
lmod.fit(X, y)


lmod = Add1Ridge()
lmod.fit(X, y)

lmod = Add1Lasso()
lmod.fit(X, y)

lmod = Add1ElasticNet()
lmod.fit(X, y)

lmod = Add1LinearRegression()
lmod.fit(X, y)

lmod = Drop1Ridge()
lmod.fit(X, y)

lmod = Drop1Lasso()
lmod.fit(X, y)

lmod = Drop1ElasticNet()
lmod.fit(X, y)

lmod = Drop1LinearRegression()
lmod.fit(X, y)

Development sklearn_linear_model_modification

To install sklearn_linear_model_modification, along with the tools you need to develop and run tests, run the following in your virtualend:

$ pip install -e .[dev]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file sklearn_linear_model_modification-0.0.9.tar.gz.

File metadata

  • Download URL: sklearn_linear_model_modification-0.0.9.tar.gz
  • Upload date:
  • Size: 5.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for sklearn_linear_model_modification-0.0.9.tar.gz
Algorithm Hash digest
SHA256 3ba29cba366a067faf1e755f4ecb784f6432e839d2d1947a14345dab89f38e73
MD5 ac0be95a58803842f36a44ce2a617885
BLAKE2b-256 9c547b9a282f2ee0a863cd1b7fa18a878296d68eeb1a7f7ba855a8504c88c5d2

See more details on using hashes here.

File details

Details for the file sklearn_linear_model_modification-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: sklearn_linear_model_modification-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 7.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for sklearn_linear_model_modification-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 a4196c7c41c7fcc98c00f864cd8e0b1ba7ea9f0e53ea42b3de470f453a4f39c0
MD5 3cd75c453ad5d43af3de2882a31bac63
BLAKE2b-256 a37f40bf7b5595db8b031fad970d0de0294e1123cdb167b644a5584a3410ffd9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page