Skip to main content

scikit-learn compatible package for neuro evolution.

Project description

Travis AppVeyor Codecov CircleCI ReadTheDocs

sklearn-neuro-evolution

NEAT is a method developed by Kenneth O. Stanley for evolving arbitrary neural networks. It’s an established topology search algorithm notable for its ability to optimize the weights and structure of networks simultaneously

Weight Agnostic Neural Networks (WANN) is a method developed by Adam Gaier and David Ha in 2019. The algorithm is inspired by NEAT and focuses on evolving only the topology of the neural network without evolving the weights. It is a search method for topologies that can perform a task without explicit weight training. The end result is a minimal neural network topology where with a single shared weight parameter.

sklearn-neuro-evolution package is based on a pure python implementation of NEAT called neat-python with the addition of weight agnostic neural networks that are based on weight-agnostic-neural-networks. It is compatible to use in the Scikit-learn ecosystem

Installation

pip install sklearn-neuro-evolution

NEAT Regression Example

"""
============================
# Simple XOR regression example
============================

An example of :class:`neuro_evolution._neat.NEATRegressor`
"""
from sklearn.metrics import r2_score, mean_squared_error
import numpy as np
from neuro_evolution import NEATRegressor

x_train = np.array([
                    [0, 0],
                    [1, 1],
                    [1, 0],
                    [0, 1],
])
y_train = np.logical_xor(x_train[ :, 0 ] > 0.5, x_train[ :, 1 ] > 0.5).astype(int)

x_test = np.array([[0, 1], [1, 0], [1, 1], [0, 0]])
y_test = np.array([1, 1, 0, 0])

# #############################################################################
# Fit regression model
regr = NEATRegressor(number_of_generations=1000,
                     fitness_threshold=0.95,
                     pop_size=150,
                     activation_mutate_rate=0.00,
                     activation_default='sigmoid')
neat_genome = regr.fit(x_train, y_train)
print("Score", neat_genome.score(x_test, y_test))

neat_predictions = neat_genome.predict(x_test)
print("R2 score: ", r2_score(y_test, neat_predictions))
print("MSE", mean_squared_error(y_test, neat_predictions))

NEAT Classification Example

"""
============================
Plotting NEAT Classifier
============================

An example plot of :class:`neuro_evolution._neat.NEATClassifier`
"""
from matplotlib import pyplot as plt
from sklearn.datasets import make_classification
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from neuro_evolution import NEATClassifier

X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
                           random_state=123, n_samples=200)

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.25)

clf = NEATClassifier(number_of_generations=150,
                     fitness_threshold=0.90,
                     pop_size=150)

neat_genome = clf.fit(x_train, y_train)
y_predicted = neat_genome.predict(x_test)

fig = plt.figure()
ax = plt.axes(projection='3d')

# Data for three-dimensional scattered points
train_z_data = y_train
train_x_data = x_train[:, 1]
train_y_data = x_train[:, 0]
ax.scatter3D(train_x_data, train_y_data, train_z_data, c='Blue')

test_z_data = y_predicted
test_x_data = x_test[:, 1]
test_y_data = x_test[:, 0]
ax.scatter3D(test_x_data, test_y_data, test_z_data, c='Red')
ax.legend(['Actual', 'Predicted'])
plt.show()

print(classification_report(y_test, y_predicted))

WANN Regression Example

"""
============================
# Simple XOR regression example
============================

An example of :class:`neuro_evolution._wann.WANNRegressor`
"""
from sklearn.metrics import r2_score, mean_squared_error
import numpy as np
from neuro_evolution import WANNRegressor

shared_weights = np.array((-2.0, -1.0, -0.5, 0.5, 1.0, 2.0))
num_of_shared_weights = len(shared_weights)
x_train = np.array([
                    [0, 0],
                    [1, 1],
                    [1, 0],
                    [0, 1],
])
y_train = np.logical_xor(x_train[ :, 0 ] > 0.5, x_train[ :, 1 ] > 0.5).astype(int)

x_test = np.array([[0, 1], [1, 0], [1, 1], [0, 0]])
y_test = np.array([1, 1, 0, 0])

# #############################################################################
# Fit regression model
regr = WANNRegressor(single_shared_weights=shared_weights,
                     number_of_generations=200,
                     pop_size=150,
                     activation_default='sigmoid',
                     activation_options='sigmoid tanh gauss relu sin inv identity',
                     fitness_threshold=0.92)

wann_genome = regr.fit(x_train, y_train)
print("Score: ", wann_genome.score(x_test, y_test))

wann_predictions = wann_genome.predict(x_test)
print("R2 score: ", r2_score(y_test, wann_predictions))
print("MSE", mean_squared_error(y_test, wann_predictions))

WANN Classification Example

"""
============================
Plotting WANN Classifier
============================

An example plot of :class:`neuro_evolution._wann.WANNClassifier`
"""
from matplotlib import pyplot as plt
from sklearn.datasets import make_classification
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from neuro_evolution import WANNClassifier

X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
                           random_state=123, n_samples=200)

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=123)

clf = WANNClassifier(single_shared_weights=[-2.0, -1.0, -0.5, 0.5, 1.0, 2.0],
                     number_of_generations=150,
                     pop_size=150,
                     fitness_threshold=0.90,
                     activation_default='relu')

wann_genome = clf.fit(x_train, y_train)
y_predicted = wann_genome.predict(x_test)

fig = plt.figure()
ax = plt.axes(projection='3d')

# Data for three-dimensional scattered points
train_z_data = y_train
train_x_data = x_train[:, 1]
train_y_data = x_train[:, 0]
ax.scatter3D(train_x_data, train_y_data, train_z_data, c='Blue')

test_z_data = y_predicted
test_x_data = x_test[:, 1]
test_y_data = x_test[:, 0]
ax.scatter3D(test_x_data, test_y_data, test_z_data, c='Red')
ax.legend(['Actual', 'Predicted'])
plt.show()

print(classification_report(y_test, y_predicted))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sklearn-neuro-evolution-1.2.2.tar.gz (20.0 kB view details)

Uploaded Source

File details

Details for the file sklearn-neuro-evolution-1.2.2.tar.gz.

File metadata

  • Download URL: sklearn-neuro-evolution-1.2.2.tar.gz
  • Upload date:
  • Size: 20.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.4

File hashes

Hashes for sklearn-neuro-evolution-1.2.2.tar.gz
Algorithm Hash digest
SHA256 3ed2d28fca4e7e70b929badbfeaf819fbef1b8264985b7410bd342561d78a9ce
MD5 5d08518a82cc6379c7be94817a078cd8
BLAKE2b-256 df77cc66cc4e22c8f070b5c85cbd5995eec7c0ce9ee21683be7690ed1c5953d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page