A library to parse PMML models into Scikit-learn estimators.
Project description
sklearn-pmml-model
A library to effortlessly import models trained on different platforms and with programming languages into scikit-learn in Python. First export your model to PMML (widely supported). Next, load the exported PMML file with this library, and use the class as any other scikit-learn estimator.
Installation
The easiest way is to use pip:
$ pip install sklearn-pmml-model
Status
The library currently supports the following models:
Model | Classification | Regression | Categorical features |
---|---|---|---|
Decision Trees | ✅ | ✅ | ✅1 |
Random Forests | ✅ | ✅ | ✅1 |
Gradient Boosting | ✅ | ✅ | ✅1 |
Linear Regression | ✅ | ✅ | ✅3 |
Ridge | ✅2 | ✅ | ✅3 |
Lasso | ✅2 | ✅ | ✅3 |
ElasticNet | ✅2 | ✅ | ✅3 |
Gaussian Naive Bayes | ✅ | ✅3 | |
Support Vector Machines | ✅ | ✅ | ✅3 |
Nearest Neighbors | ✅ | ✅ | |
Neural Networks | ✅ | ✅ |
1 Categorical feature support using slightly modified internals, based on scikit-learn#12866.
2 These models differ only in training characteristics, the resulting model is of the same form. Classification is supported using PMMLLogisticRegression
for regression models and PMMLRidgeClassifier
for general regression models.
3 By one-hot encoding categorical features automatically.
Example
A minimal working example (using this PMML file) is shown below:
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
from sklearn_pmml_model.ensemble import PMMLForestClassifier
from sklearn_pmml_model.auto_detect import auto_detect_estimator
# Prepare the data
iris = load_iris()
X = pd.DataFrame(iris.data)
X.columns = np.array(iris.feature_names)
y = pd.Series(np.array(iris.target_names)[iris.target])
y.name = "Class"
Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.33, random_state=123)
# Specify the model type for the least overhead...
#clf = PMMLForestClassifier(pmml="models/randomForest.pmml")
# ...or simply let the library auto-detect the model type
clf = auto_detect_estimator(pmml="models/randomForest.pmml")
# Use the model as any other scikit-learn model
clf.predict(Xte)
clf.score(Xte, yte)
More examples can be found in the subsequent packages: tree, ensemble, linear_model, naive_bayes, svm, neighbors and neural_network.
Benchmark
Depending on the data set and model, sklearn-pmml-model
is between 5 and a 1000 times faster than competing libraries, by leveraging the optimization and industry-tested robustness of sklearn
. Source code for this benchmark can be found in the corresponding jupyter notebook.
Running times (load + predict, in seconds)
Linear model | Naive Bayes | Decision tree | Random Forest | Gradient boosting | ||
---|---|---|---|---|---|---|
Wine | PyPMML |
0.773291 | 0.77384 | 0.777425 | 0.895204 | 0.902355 |
sklearn-pmml-model |
0.005813 | 0.006357 | 0.002693 | 0.108882 | 0.121823 | |
Breast cancer | PyPMML |
3.849855 | 3.878448 | 3.83623 | 4.16358 | 4.13766 |
sklearn-pmml-model |
0.015723 | 0.011278 | 0.002807 | 0.146234 | 0.044016 |
Improvement
Linear model | Naive Bayes | Decision tree | Random Forest | Gradient boosting | ||
---|---|---|---|---|---|---|
Wine | Improvement | 133× | 122× | 289× | 8× | 7× |
Breast cancer | Improvement | 245× | 344× | 1,367× | 28× | 94× |
Development
Prerequisites
Tests can be run using Py.test. Grab a local copy of the source:
$ git clone http://github.com/iamDecode/sklearn-pmml-model
$ cd sklearn-pmml-model
create a virtual environment and activating it:
$ python3 -m venv venv
$ source venv/bin/activate
and install the dependencies:
$ pip install -r requirements.txt
The final step is to build the Cython extensions:
$ python setup.py build_ext --inplace
Testing
You can execute tests with py.test by running:
$ python setup.py pytest
Contributing
Feel free to make a contribution. Please read CONTRIBUTING.md for more details.
License
This project is licensed under the BSD 2-Clause License - see the LICENSE file for details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for sklearn_pmml_model-1.0.7-cp312-cp312-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f4c77898fac17be15d3b93ea39a8a77d59223f287bf97f1101bd8f79eb7a0a26 |
|
MD5 | b4851b957262339802b56d1ec22d3e2a |
|
BLAKE2b-256 | a0e732fd88bd687a92fa269feb244fa0ba69a95fd312ab52a37c9092bc4dbfa4 |
Hashes for sklearn_pmml_model-1.0.7-cp312-cp312-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 29ebf5849eb102a9b0c2e597f33dbb549f76a4cb2ccfc708b8603f4ecb5b41a6 |
|
MD5 | 8d5866bfd7704a999bfb294ff3e98b16 |
|
BLAKE2b-256 | bc12848bfbd3ad5c6d4a3b448439d28672ffb647fd4a3f3fce092590a7a2be88 |
Hashes for sklearn_pmml_model-1.0.7-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0744c4d13d7c499809cc79432f346a8e440c1703adc13a540e42f621a02116d4 |
|
MD5 | b513fa2eedbfaa2934e9d8c820d4a5e7 |
|
BLAKE2b-256 | f72cef38cb7f20e8420cea89a59fe6e63229ecc3f65a256af2c142a0cd5e5081 |
Hashes for sklearn_pmml_model-1.0.7-cp312-cp312-musllinux_1_1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b74725d1de4a148ac5946839f17b853a13b6db37ad4d68b4f3d256677ddd1d26 |
|
MD5 | 72950ff8e4d05a7d7fa60e0ab0989dfc |
|
BLAKE2b-256 | 6c61253cbbf9c344b1f1b577cd2d77677208fb9dba4e13f7bf8aa6886adccbb1 |
Hashes for sklearn_pmml_model-1.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2983f42c730e9204c9e24948c9a2c09d28e4ac1c7854ff306bcd2914ce349983 |
|
MD5 | bc5dfee6f1091b91c764970f621a8913 |
|
BLAKE2b-256 | 5282a0aa7d9a7cc340780de12e9538d075f3a002adb9d18170890ca33c3f622c |
Hashes for sklearn_pmml_model-1.0.7-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 09a6e88ddb0c6c55b61b504032cefee86d1bc730209f96fcaf088cd4f674361e |
|
MD5 | c39c9706739d6448a6e86d888497c831 |
|
BLAKE2b-256 | 5dff54abc2103ae354eb2c74a6b5bdd3901a8348530e7eb0a603b6fec385efc7 |
Hashes for sklearn_pmml_model-1.0.7-cp312-cp312-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c2e535fcca510bda89d92720ec068f981789e96e073f730f044a444014a40544 |
|
MD5 | 2d5fdb143fcf84df12395194d5575d7b |
|
BLAKE2b-256 | 923623cd3317d830ea7da99d4641e4e3a45438ecb05954e389a63107d67e7234 |
Hashes for sklearn_pmml_model-1.0.7-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6f64d39cc33ccafcd64e2f471902e8cd0caffe3873d2004cd6ff751da2b37ba3 |
|
MD5 | c4a70b0924b63f54e588920b6489b700 |
|
BLAKE2b-256 | 7fccbf664c7682100eee0b4b6f58cc227693dccdae6dc8103ffde311a8481d31 |
Hashes for sklearn_pmml_model-1.0.7-cp311-cp311-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b6af336ef1c2e5f2cbd57880e2e309945bbf31f74e8c0d04f45aec8475be63e5 |
|
MD5 | cf9402593250f4a9cf7c598c2f6eb887 |
|
BLAKE2b-256 | f6d121c741ed7becd2e5d17cdf7402fb9986907637db028498e96682b9c8483d |
Hashes for sklearn_pmml_model-1.0.7-cp311-cp311-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 046b1b8865496ae195f7b41b54e7e51b8f45760459adb5cb57d8f4c9e40bfe54 |
|
MD5 | b74a34e1eedf2e5c0b98fd5a13d04ea7 |
|
BLAKE2b-256 | 7c350e0e28f78137046a04e5c4ca087870f8e915221e866858854ad29776206b |
Hashes for sklearn_pmml_model-1.0.7-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | efb04a0bb16238f17ec8b0096e38beb2385d3036df023272c029882c22c9daad |
|
MD5 | e43e81b8941c5dccfc04450a86d5e7e6 |
|
BLAKE2b-256 | 09767e5996ba0aa9c5ae9d189884e50996b6300cce243245a08a9e97d8095345 |
Hashes for sklearn_pmml_model-1.0.7-cp311-cp311-musllinux_1_1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fde3535e4039446ac5b135fd857bd9844b64923b526a37b02cec007d284f73cd |
|
MD5 | 2cfb9fdc13a00eacad604ab65e629089 |
|
BLAKE2b-256 | 27c4700e2b7b9807d8302e5c1a8a9532aa0806c1765c614f41edc9503a90bc78 |
Hashes for sklearn_pmml_model-1.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | aee63540e2349675afc536d30d7cafe6d22d4ec37023036d6effaa6f7e5affae |
|
MD5 | f5a5ccb09cfed44afdae037933b59bc5 |
|
BLAKE2b-256 | aea32e92c3f09a2cd67954a930be9cf4eead5f655e2667a41302cee14b743b47 |
Hashes for sklearn_pmml_model-1.0.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ba171a4c929e407223d418dfa492523a740731d827a3a9164c6f9b6a7f794a8f |
|
MD5 | 76004f738357e947ad66ed5fee8d64e2 |
|
BLAKE2b-256 | e36643529fc4546247d69f84d95aac34dbd93785f7cf0d750c702dd90c4ab1d3 |
Hashes for sklearn_pmml_model-1.0.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f127933e7acb21584861d3bbaa8a5d6a151605f8aecd4f1135005fd163893dd7 |
|
MD5 | 864429d1ddbb83e99c727cdd4839a243 |
|
BLAKE2b-256 | 33a386c445af611326519e87c8168c76badfa1a15b4e64e14907f9e7cd8c77a1 |
Hashes for sklearn_pmml_model-1.0.7-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 86968b1732c86480c12ea33d3a689c1622c253b33622dc0be5c557a695749fca |
|
MD5 | 8f01381fe897d2ce64cae94f01ba5722 |
|
BLAKE2b-256 | 8684ccd6d488c16ca6c2d3e52e92395b28dd3422b646daf0bd9f785dbf69e798 |
Hashes for sklearn_pmml_model-1.0.7-cp310-cp310-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cb148febd68de6d7b2e30f6953e56a9e8e06558f96911348a79cff9d15b749e4 |
|
MD5 | ed62c27d19f3a9384145af5104421a64 |
|
BLAKE2b-256 | ffa0937b27d39a26e71709f37b3be575d9d6a3edc515adf583fbb58af47ca567 |
Hashes for sklearn_pmml_model-1.0.7-cp310-cp310-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 74e936efdce6c29ad1a411418a9bacc6febadc32501f433834142db4fcc8e5e3 |
|
MD5 | b413b1cde48c8d7cac3ef76fce4b1b00 |
|
BLAKE2b-256 | 746040d464d6021ca51b183f906791a6b2d10910352533bd9cc07b55ff60e936 |
Hashes for sklearn_pmml_model-1.0.7-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f45100589ede9a37bd9c276486cd37f3caf4114674457ce71f8ed8f4ccd507d0 |
|
MD5 | ea28a80ea05a4f240bd505945de02786 |
|
BLAKE2b-256 | 08bff066c58283d18973e2f3257f3f69edc3d372a4ac5583f8bfc1f6c45458e5 |
Hashes for sklearn_pmml_model-1.0.7-cp310-cp310-musllinux_1_1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | deebeb05c0cc2b4205dbca535e3574f159e856252c00e2e9dc202dd5ca21fdbd |
|
MD5 | 6f48bcd168d0a157ba8c69443a1c6ed0 |
|
BLAKE2b-256 | 252ac1c786a8d38f624917ec23e5bc6c2969c0d925d7778c44bf6f9339dd16c9 |
Hashes for sklearn_pmml_model-1.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4dc18b8c745c7b982044a27b889fb15dc8e02d16f4775f02bf0bd24cdfca1d60 |
|
MD5 | 400a2eddf688f76bc554236ce2be4df1 |
|
BLAKE2b-256 | e6e05d299775859afc5df0814ccefb52324368594899c86b773382cafd576ec5 |
Hashes for sklearn_pmml_model-1.0.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2c63e3b53bdb499fafb5b601a42fca7d70865a7a5f777906f17cb670eeb13577 |
|
MD5 | 02896d1d28048635ab6840c6e92cccfa |
|
BLAKE2b-256 | 006ce4bdd4d6926c82451cbad5228430642029adac4c83b4e9e00f8a7c82a60f |
Hashes for sklearn_pmml_model-1.0.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b18e2c0c20fcc748565769db7053fa2f0543cb36354654210a2d205fe3ea47ca |
|
MD5 | 5455caf3882f1fffd69ee5520d657419 |
|
BLAKE2b-256 | 139a216169cc3e5420f13e5adc817c26ce11a9accb21d182f38d809092295456 |
Hashes for sklearn_pmml_model-1.0.7-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 967d142099d4716990e8b78a2deeba2cb489325f8a01af40eb9a2f066f411993 |
|
MD5 | 78163381bb5629dc93050e41b6ace676 |
|
BLAKE2b-256 | c74e905d0a9e7986cd098f3d869e2d497cfa637d431fcca4131e4191435f89a2 |
Hashes for sklearn_pmml_model-1.0.7-cp39-cp39-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 939c82719b41c79f970ba475d90195491ebcc1764f2aa0b78cfd069c12269ef4 |
|
MD5 | e43d1ea39f03cab6bc8209db4572f4f4 |
|
BLAKE2b-256 | 53bc3c89d6ab835260036a6a59ccd244b6443838d458fbd124a3f98d9d778c94 |
Hashes for sklearn_pmml_model-1.0.7-cp39-cp39-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c903a7686bd749eec6ec9d9b80bcfd55f3de3d0f54ca2796d119bc001275aa00 |
|
MD5 | 0dffdc0f0193d5302c7e4b9485bfcf9c |
|
BLAKE2b-256 | e45bcc1da065c6c1cf13fc5c5b168f6333d9d23fcda3515638b1613d97e7a21c |
Hashes for sklearn_pmml_model-1.0.7-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b8e21186c43657dcc8ab135936ebb2c32f54c380523446ec0a208cd77d9e07e4 |
|
MD5 | 060dcbb9ce73125c652202149db2aa47 |
|
BLAKE2b-256 | a00dca60221244a48bb4953a90ebb6713ba5bec7c7408898a753133d12e1a2c7 |
Hashes for sklearn_pmml_model-1.0.7-cp39-cp39-musllinux_1_1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cdab2a04e1220eb841c62058eeb690878ad67394afb1799173b373f74583047b |
|
MD5 | 3f32e554c5755f7258e9ac72c4e003e5 |
|
BLAKE2b-256 | 2b9540da3a76e21d33a9374f9241ec9ba5463174f5b5fc1b4cb7c262c9f1d12d |
Hashes for sklearn_pmml_model-1.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | caadfd2844acc447c8854cbed175efa77fc7ebbb3e49b46d9ae8cac2e628a1b4 |
|
MD5 | fee53d336144c6fa845cf7e6308739b4 |
|
BLAKE2b-256 | dd188256697fa122646a98d9c6f7c5c19c8e12cbe4de6e8cb7e2ca8228c75b95 |
Hashes for sklearn_pmml_model-1.0.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7dde19f2a9752007b657e708e56900758c7a30daaf828891ca6423292bd188bb |
|
MD5 | 3d6fe0b7f95aba7185fac1dc82893579 |
|
BLAKE2b-256 | a1dd74a2af046186e21995b44ba3c75677dac2b241d6caa0f101dc5964e4bfd8 |
Hashes for sklearn_pmml_model-1.0.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a7f4b2a0c91c530fa01f002c202abcaa145d26e208b7abc13643717f63ab8a39 |
|
MD5 | 2dd7b657fd491406047bfe116b807939 |
|
BLAKE2b-256 | 63e4d95fcd96d354f6d54f7e347b809aab4941b0c226cc12fa392cae53c0cce6 |
Hashes for sklearn_pmml_model-1.0.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 29efa5388130ff16d03ed2f5d553096a48de70b051b72863e4e074a299add9c8 |
|
MD5 | 5689894c3ea283477ed6fc0941bd8114 |
|
BLAKE2b-256 | a92ce02db20b71086046891b64e84630b86dbcf21028255a6cc5ec1e94c7395e |
Hashes for sklearn_pmml_model-1.0.7-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4a1dc244fec0b130b187e3055e340fe9da68b6aa107709b356ef395a9b4acd59 |
|
MD5 | 8f46e16495e988be99fcad21e5c815cd |
|
BLAKE2b-256 | 193a63449847b35e774c2472391882928cd7472d5006191d3c66b31a9dc2e27c |
Hashes for sklearn_pmml_model-1.0.7-cp38-cp38-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 88ccd1674bd7f99a7eb41ea3deadf0a136fa56a904c2a090d05c58d59bd40363 |
|
MD5 | 1daee7d2da3626cdb1b3315e4caa24cb |
|
BLAKE2b-256 | c33159e528def65eab6c38c47ee5bdd77188671b84b450a85f69bd105906f116 |
Hashes for sklearn_pmml_model-1.0.7-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cd5f29ad1644d718a2f0ef441e90897bde527c433657268a120934f0425a8567 |
|
MD5 | 8736b26cc424e95b121ec0a2cabf66fb |
|
BLAKE2b-256 | 78cadcffc3e493709d6e20530c4dc4951f09f4a7ee3680759d853a4247e6a46a |
Hashes for sklearn_pmml_model-1.0.7-cp38-cp38-musllinux_1_1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 366032aaf1424f8c643bd8f878cfecec29aeb496c1c44c36333238352f2f3b1a |
|
MD5 | 9784fc122b29a32481a587f671119952 |
|
BLAKE2b-256 | b3a78323eeb7c85881a6aaaab9340529d04f463cef175732c73b38052f5bb682 |
Hashes for sklearn_pmml_model-1.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | adb9ca263f90e2154e52ebec6d8adf9e3f7a349051257b2b8a421ed74a3509b2 |
|
MD5 | f4b53fe8ec79da6cbd9282645d880e0d |
|
BLAKE2b-256 | 554cdbff32993bc63a2e17c4990abae7b540faf0c338ada312985f6cf0aa7e49 |
Hashes for sklearn_pmml_model-1.0.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fb878272a7538280acd032ed183bdc6f74739a662f65d2432c70658c084ea73e |
|
MD5 | cb842ad5167fe6d7ef77393fd5794cf2 |
|
BLAKE2b-256 | 7752ea5d7c1579cee3450d42d6394e6bcd98557ca1eb2d30c1a53e75ad5fe239 |
Hashes for sklearn_pmml_model-1.0.7-cp38-cp38-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b36f665a0439481c1ded13cf118c90e60993cbd8c8bfd18b050d6b30017a44a4 |
|
MD5 | 6013155a41c1c2add627ba2ae12bd7dc |
|
BLAKE2b-256 | 89e585ee79dec95b0867316cbf1350aa8dd31ea6cdd8ee22b2d2a977cfeab47d |
Hashes for sklearn_pmml_model-1.0.7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bfbc789bc2c6ffb422ccb8e48fcff31e02a2c77172e230c5a6c71c4b660f0e64 |
|
MD5 | a638aa872995ce496a343d704adee5e0 |
|
BLAKE2b-256 | be8b5dbddecd53c6aa8c8080bed9cf0b3e4907c0ce2a4c8d98ee3b1601740465 |
Hashes for sklearn_pmml_model-1.0.7-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d8bbb88dc375a9d86dfd9988f533a45088ded9c9b82b2e302af20ba654f1acbf |
|
MD5 | 2f44d9b50bf2e9d1f18297109087e6f2 |
|
BLAKE2b-256 | c72d8797fc5dccb3cc7e5672b670ed8f84158c7889026e4cb0d4655d42ad5b93 |
Hashes for sklearn_pmml_model-1.0.7-cp37-cp37m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c68fa715ede5dcc2a9c47e835c8280e48f24b4cbc4405f313477fd7b57d2d76f |
|
MD5 | bd707529e7bb7f423d1bec52123479ee |
|
BLAKE2b-256 | 7f9174fa6394468169cf4a7fbeb15290df213da106b6f37ec2e7dbf2c36efc1a |
Hashes for sklearn_pmml_model-1.0.7-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 97b388fcd1b0e2051662df4cfdf59d9a99de944931059cdc4e445bd9d00b5a87 |
|
MD5 | fbdc565282e8403f0805faf238774464 |
|
BLAKE2b-256 | 4e4ef04beaa60a43ea8e1c7672b4f5b69d88abe2e938ec471ebeaaebd588ca7b |
Hashes for sklearn_pmml_model-1.0.7-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 75b46a2f8bd6994fd35d3d3145c62c1fc5c08bba960abf492447bd9b3e6a233b |
|
MD5 | 812bae076d2d5cc5a3cdf5a96a31e837 |
|
BLAKE2b-256 | dde67ea0a6618d00dcd1a6da3d7c93c9a59221b65651482c83cebf37f620495d |
Hashes for sklearn_pmml_model-1.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0858beb4ab3eeb6bbefe727c2ee800c07af2d7687e18fb4d8aa41de983b93656 |
|
MD5 | a31cc11daa600b05746a1d1566421968 |
|
BLAKE2b-256 | 307706801482c6b3c65d1f9d194dbc2afde4774ecd39f3c44b083d08722bc026 |
Hashes for sklearn_pmml_model-1.0.7-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 60b1ccdccfec9c2cd8dcfe5b37363e1b51307c436b059189b40b7e442b25aa04 |
|
MD5 | 69298b80b7de1eb400dd21d4d7814c34 |
|
BLAKE2b-256 | 13e44fb87d2bd93b7fed8cb584b5ff67e4773d04b2fef54ce9d442f5c34fd5a8 |
Hashes for sklearn_pmml_model-1.0.7-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ca269ea15c68fc522ba77c14ffcc1da516e134bd0ee3cb1875679a2e6190cb81 |
|
MD5 | 66e76b692bb892d486a2ae3e87d64f6a |
|
BLAKE2b-256 | da5a57b9bea3be365edfb30ba1168f6f58aec46eb41bf851723ad3b371f3c782 |
Hashes for sklearn_pmml_model-1.0.7-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9fd220b0353d1a635ddfcdedcbc38b6a53157b71b46fbe20690d2d399f52f8ce |
|
MD5 | 1d1bf097d81d77920b2472939ee95bf3 |
|
BLAKE2b-256 | 3f08562b42141f632ba07b79488c10bd45442f462e71cd1e4536f6c50ba5a44b |
Hashes for sklearn_pmml_model-1.0.7-cp36-cp36m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8ca5b39b2adda440973c17e986a74c40c4562a691d1177d6c11a88ef0b889bf7 |
|
MD5 | 47b356aefdb96e3ca6808ef9d0f72441 |
|
BLAKE2b-256 | f893056912f9d0f63f9a0b08d4e8a268fd265c030a110453a596daf350183cc7 |
Hashes for sklearn_pmml_model-1.0.7-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 34b6c975512817413de09b4b803fceba77f2d919ddacc9d38917aa92e2dfa20e |
|
MD5 | a1d81cdfbd3da982d42297f88cee8021 |
|
BLAKE2b-256 | 1a7a3aac9315b843219078958a4ce91c9703e89ed1228d8b7b1601d21b008bce |
Hashes for sklearn_pmml_model-1.0.7-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5625616ea7b2c0bbc2320d88b6eed75c6df920760d64261163fd9d996b40ae83 |
|
MD5 | 326701dba4205d3bc2c9ce03926610de |
|
BLAKE2b-256 | 1f5e8e133acb99ab0effe45a6398c3d250e66d65448b4c95b3c21034007213c1 |
Hashes for sklearn_pmml_model-1.0.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 122b6799f93f86edbc22fc5e0a3f3a9e0189d08c1a16b0596fe4a3b0db711d10 |
|
MD5 | f45cb6442ba7c1698410a11c0f215a9e |
|
BLAKE2b-256 | dec263cde9572445fcff10cc79efdb147ccfe825139c950c712227c1ede06392 |
Hashes for sklearn_pmml_model-1.0.7-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bd7a94dcf1a7bc5c27c6d60901760ea4b909b0e6bdc749c67e4a9e9fb94b96b8 |
|
MD5 | ce44ee617a2f318b9f6b2b0d28e7b2f6 |
|
BLAKE2b-256 | 7fe9c4d3da03d678c9e33c758ae32f943859e102e1d11d23430dac7c713eea77 |
Hashes for sklearn_pmml_model-1.0.7-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 045c0223eeb30ee28ffe794ed2550bea3c4d6d3c0b233a4703f24ce476424e8f |
|
MD5 | d16f18743b19b9926d2b01bbb88193b4 |
|
BLAKE2b-256 | 172062c7560852da6e9b69312d7ed539adc7d87f60350ce410aac9a14ec7ccf8 |