Skip to main content

README.md

Project description

Documentation Status

This module provides quantile machine learning models for python, in a plug-and-play fashion in the sklearn environment. This means that practically the only dependency is sklearn and all its functionality is applicable to the here provided models without code changes.

The models implemented here share the trait that they are trained in exactly the same way as their non-quantile counterpart. The quantile information is only used in the prediction phase. The advantage of this (over for example Gradient Boosting Quantile Regression) is that several quantiles can be predicted at once without the need for retraining the model, which overall leads to a significantly faster workflow. Note that accuracy of doing this depends on the data. As can be seen in the example in the documentation: with certain data characteristics different quantiles might require different parameter optimisation for optimal performance. This is obviously possible with the implemented models here, but this requires the use of a single quantile during prediction, thus losing the speed advantage described above.

For guidance see docs (through the link in the badge). They include an example that for quantile regression forests in exactly the same template as used for Gradient Boosting Quantile Regression in sklearn for comparability.

Implemented:

  • Random Forest Quantile Regression

    • RandomForestQuantileRegressor: the main implementation
    • SampleRandomForestQuantileRegressor: an approximation, that is much faster than the main implementation.
    • RandomForestMaximumRegressor: mathematically equivalent to the main implementation but much faster.
  • Extra Trees Quantile Regression

    • ExtraTreesQuantileRegressor: the main implementation
    • SampleExtraTreesQuantileRegressor: an approximation, that is much faster than the main implementation.
  • Quantile K-nearest neighbors (KNeighborsQuantileRegressor)

Installation

The package can be installed with conda:

conda install --channel conda-forge sklearn-quantile

Example

An example of Random Forest Quantile Regression in action (both the main implementation and its approximation):

Usage example

Random Forest Quantile Regressor predicting the 5th, 50th and 95th percentile of the California housing dataset.

from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn_quantile import RandomForestQuantileRegressor

X, y = fetch_california_housing(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.5, random_state=0)

qrf = RandomForestQuantileRegressor(q=[0.05, 0.50, 0.95])
qrf.fit(X_train, y_train)

y_pred_5, y_pred_median, y_pred_95 = qrf.predict(X_test)
qrf.score(X_test, y_test)

Important links

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sklearn_quantile-0.1.0.tar.gz (23.7 kB view details)

Uploaded Source

Built Distributions

sklearn_quantile-0.1.0-cp312-cp312-win_amd64.whl (903.2 kB view details)

Uploaded CPython 3.12 Windows x86-64

sklearn_quantile-0.1.0-cp312-cp312-win32.whl (859.6 kB view details)

Uploaded CPython 3.12 Windows x86

sklearn_quantile-0.1.0-cp312-cp312-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

sklearn_quantile-0.1.0-cp312-cp312-musllinux_1_2_i686.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

sklearn_quantile-0.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

sklearn_quantile-0.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

sklearn_quantile-0.1.0-cp312-cp312-macosx_11_0_arm64.whl (349.0 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

sklearn_quantile-0.1.0-cp312-cp312-macosx_10_9_x86_64.whl (376.4 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

sklearn_quantile-0.1.0-cp311-cp311-win_amd64.whl (907.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

sklearn_quantile-0.1.0-cp311-cp311-win32.whl (862.5 kB view details)

Uploaded CPython 3.11 Windows x86

sklearn_quantile-0.1.0-cp311-cp311-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

sklearn_quantile-0.1.0-cp311-cp311-musllinux_1_2_i686.whl (2.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

sklearn_quantile-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

sklearn_quantile-0.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

sklearn_quantile-0.1.0-cp311-cp311-macosx_11_0_arm64.whl (349.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

sklearn_quantile-0.1.0-cp311-cp311-macosx_10_9_x86_64.whl (376.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

sklearn_quantile-0.1.0-cp310-cp310-win_amd64.whl (906.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

sklearn_quantile-0.1.0-cp310-cp310-win32.whl (863.3 kB view details)

Uploaded CPython 3.10 Windows x86

sklearn_quantile-0.1.0-cp310-cp310-musllinux_1_2_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

sklearn_quantile-0.1.0-cp310-cp310-musllinux_1_2_i686.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

sklearn_quantile-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

sklearn_quantile-0.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

sklearn_quantile-0.1.0-cp310-cp310-macosx_11_0_arm64.whl (349.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

sklearn_quantile-0.1.0-cp310-cp310-macosx_10_9_x86_64.whl (376.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

sklearn_quantile-0.1.0-cp39-cp39-win_amd64.whl (907.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

sklearn_quantile-0.1.0-cp39-cp39-win32.whl (864.0 kB view details)

Uploaded CPython 3.9 Windows x86

sklearn_quantile-0.1.0-cp39-cp39-musllinux_1_2_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

sklearn_quantile-0.1.0-cp39-cp39-musllinux_1_2_i686.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

sklearn_quantile-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

sklearn_quantile-0.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

sklearn_quantile-0.1.0-cp39-cp39-macosx_11_0_arm64.whl (350.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

sklearn_quantile-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl (377.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file sklearn_quantile-0.1.0.tar.gz.

File metadata

  • Download URL: sklearn_quantile-0.1.0.tar.gz
  • Upload date:
  • Size: 23.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for sklearn_quantile-0.1.0.tar.gz
Algorithm Hash digest
SHA256 267dbba728a58f1da6b7fff7b6e8c9a87ca290b96159fa1ebddcc5f463c5361c
MD5 bd0ed327d4a61fc359699aeae1bd3122
BLAKE2b-256 5ec500bc89a4fef563308a97d5b6e69bedc04a70bfc23fc9e1ba7d2ba97eabe1

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1e0ad2c1f1129c4719fa6b391ff0e9175790129b019cc2ecd1b153cc3e24559c
MD5 b38ce3342d97a934faf552ed80e8d257
BLAKE2b-256 10b792377659b99e708117406b7261620a094d395c5523e22ba686fbf75beba5

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 f43d636fcb1fbe2886c94a2b2f8d001443d91543e5aaa1634d37c246bb78a83b
MD5 20f1c21f1f788df5be2ef59ff1b9b989
BLAKE2b-256 5e72cc8634853278a3927983859b0557cf06f48cf5275ebbef7cf45200d02d41

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4385df2f5de8e49af4ec7509dd80584ccf5811dce44ff232f523c1270a0b1766
MD5 af8b0293718eafbfe7aa87e4c93e1793
BLAKE2b-256 2c59cc947f0ee2e1465d640d7f4b84d7caade049619d782e3763a57dff72910a

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 7423db65f8987b56e5d79e29597ae7cd11566aa8904cc5ceccdcf302ca608091
MD5 cd288d25eb911861475036b1cf907879
BLAKE2b-256 c57cfc188e30d1fa72d7b39c5bbcfd1130cb987576c11853b6e237a2b0a920bc

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bfe51ab35c4bb8668a076e0be3f6392b52156c06ccae8878b6b901bb0bdc8842
MD5 bc5d4f6dd66969e23236f3d51381ab2d
BLAKE2b-256 15aef8604b41fd6bca3300bd9e42ba2c6a79bbd05528d81e0e4cad428e208bb5

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a5f61135c362431a4bd36d494c1980d6790bf0ee53eef6fd710110acff43ecb4
MD5 392dbf8e335ef93522e897c383bc975d
BLAKE2b-256 ae658f407e7402149a38713f3753b55995f17f92a0061987ad87d6ceab475ef2

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6d018c3afe35b7e0d4635a401c22ccbc6c5708a0cdbeee8dd47c8f66adcb585e
MD5 98443f4ac8bd4d6ea8a2628b0f017cd0
BLAKE2b-256 df01c89c6e32e43a302972b8022ba113426bcbee98c06404fb0107f137625c95

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0a1cc8412948b6ae8b669b1416fd8afe00676359cd5d9d620617a5b0c5db4e6b
MD5 be48906f8299135a1507575dc32b0706
BLAKE2b-256 ee94ab255f3f6e65093a37f09d1cfa7369a2df0fa2440f05a98a0ebe27fc9ccf

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2f75843c2eb34f0e20671425879ad414d0d34ff8e5c01de33bfe9a01eeb9d2db
MD5 5d5002a4b186ef580e2a63482cdee220
BLAKE2b-256 1307570dd3636082d010d4af82509d48be78bb7e87abda7e4fb7e921bf0f8c2c

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 fa9b124ffa5ddb91bf1494ce7465a93f671357c7dfa1c945af9404d8c175b356
MD5 e4e8dc98b610721a229bbddd2883d39f
BLAKE2b-256 9db43ff9c504137819cbdae08b0029853c03a05819294bcfb29bc835c7048aee

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fc6f0c85e3b8866b4e7d1f4cb5d4a6ebcf7dcfc2164e014e54ce8b0325f2f8e6
MD5 73e6fab525252b89d4e8bfb43cc99663
BLAKE2b-256 1954b2570cac5d8d579f030014d9bac2d7ea0dc0660c5db13c6430f549cd8b53

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 07ffb2c50f1d0390b2fc9723a5ae4a8a002067effdc5640dff1592e3e614f971
MD5 b58e85746541372b7bb8e4d858044cf8
BLAKE2b-256 f56ddeff5ddca97803fa7c33786c88b0a4f633d4a9a57e7fc03499be9733bc45

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a4186dbd158fddacc9f5c0470a67ab468e1d0810a6e16cf7e5c12b4d766e5af5
MD5 c7eaed3ba66c7b892a901a618d59af9a
BLAKE2b-256 43ba11c70a66872e67c1a452ec77da9c454e404d67a967fac1f5d55677060dc8

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 eb03054230fdcd219f03bc3e47abbdc302ecd9f57e496251e0f73f646f09306f
MD5 e5785118437dbd205682e3838e969d94
BLAKE2b-256 ef9b245c50d561e87cb2bb7a670fc2f60f25a81231763eb0cfbfa0572196c088

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2fa1a0c954471beb882475b4450d9021218c706d5ea67b9af99aed1876ce53f8
MD5 6ae096e924ff273fd5d781ebf836d9d2
BLAKE2b-256 10465e9680567fbfc805c2cc3ff6834017a5b3f2629d8399b4a869d7bd8c0b00

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5e3706c773d195ff1c79adc8908fc780abd16862a643af317ab6b0df615ae9c1
MD5 d52dedf9a3384827de50bdf0c78c1674
BLAKE2b-256 74054a194f31e807e53c31cea54ad93549291c7527339aae83ac4724a0d1f975

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 69f423118ba276c2cb351de90499487dfd49b6b45c2c3eef906f511edbd67773
MD5 1cc7583206f4078f6f0064fc37580dfc
BLAKE2b-256 61618a9c2219bcb411116059fc16a9353f99f2a758a24bb2bcb58ba06c0c082b

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 42ee698a2a569c5e0a04d11f46807ff9f034e27f652c1f584356807c4eb9ee86
MD5 1e61e9dfed4611a392772441c6646799
BLAKE2b-256 c53e6b8f10d178a6757b2e74e0deb5ed68480e1efbc92c56c317ee14e965f6a7

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d375665322598e43205c1b8d9934c0087b878b0e496c1c2ce9b4b499ac1fd0f7
MD5 e7d3333f0308d1746d274fa61dcdb2c1
BLAKE2b-256 c82cc4f7c3f0ee8564aeea9a72f8b07a67e00acf5d54a6ea05b8ee5b67d16972

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 a03b00d789cee5af4bee7cb0ed14402552900b04a668156def243be030247859
MD5 64cf12d68a8856e905a91ca2f45e0b38
BLAKE2b-256 5fc2fc3661f0143aafc9758fb472e648e8d3de1ad2715a9bae16db83b60e3521

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d0efe12ea7b5c8a4a203bc9d5c8cafc00cb3dc5d97a9a22d4ca5a4eff1b26a84
MD5 b2d6ad322adc22f5d063f968e5e7a135
BLAKE2b-256 58c3193a26042a4058a553e7a0d42f41777c0c84651d4605a983630b7b9391f9

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 de5c63821f830fbceecacc8d87bb59a3302ec116a860b2920a9b73b34ccd469d
MD5 a22625e44019da5e3cd2b9bf0106c3d1
BLAKE2b-256 7df3d520c5bbbe65796426e4630add0452a55f84cd0cb69dab37ca802c3c5cf5

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c47afac806cdc1c802fdce917f74a698bb1c3307b4c1b97881a0c1f945ff7dbc
MD5 f8922c09ace42cfbed7afdc4d08e4c8a
BLAKE2b-256 bcc2c9b2a98dc19b2e56524d99d4a93cbd15a70a1d2daa2418b675bfa0717cc9

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 819eef318b7452c2d5c3c4c39db55b946d955bdc49ddced2f5acfb63636fcee0
MD5 b04424fbb5871f6943f6f23a0e6003a2
BLAKE2b-256 6644e92a8b8595b2490f113159ee0862fb69eda78c8e10945c4f0a1ae3ae86ea

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9ed67482f6b31fc54a49836f4208df078e68860b06b26d1be0c84b6d3f4a3430
MD5 0a60186fe01d63815dc2f0378d258424
BLAKE2b-256 a4c0ed560cb5cd5ddbad91458155ed7179f3d85adb1afbbdb271c5813277dc1a

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 31f87c08e679b2c68b12de9a56a36a15604d1057ec3521a0edc996f051f3eb6f
MD5 89088e5420197f6827c2b897b7cee88f
BLAKE2b-256 b1ed1ac6b91f935f99578ddff3dfcfec869253fac7c0cc47c3fe07875e1962c8

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a4c6d62f939edb1f0ab29238dc593036bd03990661096c828db818cf51dc2c56
MD5 39d3e1b7fd957992cd01ffe17d24265f
BLAKE2b-256 8cc167914be06bbffb24a7d88ecd1368ec29afeb08da4b9ce125b8bbd833bfcd

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 8e7c2566ecff7c7e681e3af457c76cb44095f10a0bdbbfc72f81b99cf656049d
MD5 53aa9e56e5057c93a021c6a5d93ee70c
BLAKE2b-256 257c68d7a607a716b6ad8fb054ce3ddf6d13db7f4ce2b2acd6a596e44027bb31

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c218de8d823e852cdd8e6d311ed17ab89f82d92f6c1428c21e95aaf5e7469fd
MD5 496470f64d54c9deafe47a805bfd9568
BLAKE2b-256 09dff9400270c98e727daca9d7e175d90ef1f9a20be02628b0a09ab2b41a6ef9

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2f85b5ea2e1f9cbb4d23d99bdaa023be8b2ced61d912c0afaf48578a869b4364
MD5 61226176a2af615715bf52ca60402abf
BLAKE2b-256 5a02986c5b53de91234a4995f7d2cffc860e019f84176aaa344e77673463df3c

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7a5c6adf4b794b528e356eb0374b8aa9fcef4f89b1f21d64ee1718b296c0ba97
MD5 ccf4bda1cdf8c4a82cd7d4f1c90ccca9
BLAKE2b-256 e1f1a7822886faf7826d2621a9bec270ee77a4a865e414b576a206fd5926097a

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4de589de6681d6e9addd20c93d099527b580985e36cd5b22566657f7279daaaf
MD5 b7c6fc3cdc0db597f8651f97b255a54e
BLAKE2b-256 4a0c7df9fd9fa1adffbc649255dc5a1cb2e9e01679cc6f872a8fe4e263375ad0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page