Skip to main content

This package is used for recommendation system

Project description

[![Azure](https://camo.githubusercontent.com/30c5de36c9e0d9daf0d525602d7b904a55ae06fa/68747470733a2f2f6465762e617a7572652e636f6d2f696d62616c616e6365642d6c6561726e2f696d62616c616e6365642d6c6561726e2f5f617069732f6275696c642f7374617475732f7363696b69742d6c6561726e2d636f6e747269622e696d62616c616e6365642d6c6561726e3f6272616e63684e616d653d6d6173746572)](https://dev.azure.com/imbalanced-learn/imbalanced-learn/_build) [![Travis](https://camo.githubusercontent.com/bfbd123c845655541cece8faae04790bad394a5c/68747470733a2f2f7472617669732d63692e6f72672f7363696b69742d6c6561726e2d636f6e747269622f696d62616c616e6365642d6c6561726e2e7376673f6272616e63683d6d6173746572)](https://travis-ci.org/scikit-learn-contrib/imbalanced-learn) [![Codecov](https://camo.githubusercontent.com/0a629df916288dca13b2185c19ee0479a3e6208d/68747470733a2f2f636f6465636f762e696f2f67682f7363696b69742d6c6561726e2d636f6e747269622f696d62616c616e6365642d6c6561726e2f6272616e63682f6d61737465722f67726170682f62616467652e737667) ](https://codecov.io/gh/scikit-learn-contrib/imbalanced-learn)[![CircleCI](https://camo.githubusercontent.com/ab5485169796145c57b4e89a6cc95f71cdaea3f9/68747470733a2f2f636972636c6563692e636f6d2f67682f7363696b69742d6c6561726e2d636f6e747269622f696d62616c616e6365642d6c6561726e2e7376673f7374796c653d736869656c6426636972636c652d746f6b656e3d3a636972636c652d746f6b656e)](https://circleci.com/gh/scikit-learn-contrib/imbalanced-learn/tree/master) [![PythonVersion](https://camo.githubusercontent.com/b6b8563c68b946b41ebbe87c44bac24d63f11107/68747470733a2f2f696d672e736869656c64732e696f2f707970692f707976657273696f6e732f696d62616c616e6365642d6c6561726e2e737667) ](https://img.shields.io/pypi/pyversions/imbalanced-learn.svg)[![Pypi](https://camo.githubusercontent.com/64c26484169cb5203db00183e27ec264b91e0454/68747470733a2f2f62616467652e667572792e696f2f70792f696d62616c616e6365642d6c6561726e2e737667) ](https://badge.fury.io/py/imbalanced-learn)[![Gitter](https://camo.githubusercontent.com/3281e929fd6294f8919b85a27a3638ccccd92932/68747470733a2f2f6261646765732e6769747465722e696d2f7363696b69742d6c6561726e2d636f6e747269622f696d62616c616e6365642d6c6561726e2e737667)](https://gitter.im/scikit-learn-contrib/imbalanced-learn?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)

## sklearn-ranking

sklearn-ranking is a python package offering a ranking algorithm.

### Installation

#### Dependencies

imbalanced-learn is tested to work under Python 3.6+. The dependency requirements are based on the last scikit-learn release:

  • scipy(>=0.19.1)

  • numpy(>=1.13.3)

  • scikit-learn(>=0.22)

  • joblib(>=0.11)

  • keras 2 (optional)

  • tensorflow (optional)

Additionally, to run the examples, you need matplotlib(>=2.0.0) and pandas(>=0.22).

#### Installation

imbalanced-learn is currently available on the PyPi’s repository and you can install it via pip:

` pip install -U sklearn-ranking `

The package is release also in Anaconda Cloud platform:

` conda install -c conda-forge sklearn-ranking `

If you prefer, you can clone it and run the setup.py file. Use the following commands to get a copy from GitHub and install all dependencies:

` git clone https://github.com/ashishpatel26/sklearn-ranking.git cd sklearn-ranking pip install . `

Or install using pip and GitHub:

` pip install -U git+https://github.com/ashishpatel26/sklearn-ranking.git `

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sklearn-ranking-0.0.1.tar.gz (3.0 kB view details)

Uploaded Source

Built Distribution

sklearn_ranking-0.0.1-py3-none-any.whl (3.7 kB view details)

Uploaded Python 3

File details

Details for the file sklearn-ranking-0.0.1.tar.gz.

File metadata

  • Download URL: sklearn-ranking-0.0.1.tar.gz
  • Upload date:
  • Size: 3.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.2

File hashes

Hashes for sklearn-ranking-0.0.1.tar.gz
Algorithm Hash digest
SHA256 02ffca0ba021c4b1e622a386add53c98291dc8436ac944467c5d08d56160b21e
MD5 4bb0aedc8c728d02c20822c6b770b485
BLAKE2b-256 0f1dc4de44a2e481e2de7719143dba35150805050cdfae0fd8456d56c719e2da

See more details on using hashes here.

File details

Details for the file sklearn_ranking-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: sklearn_ranking-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 3.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.2

File hashes

Hashes for sklearn_ranking-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 64452064a5380ed23992152171bd4af48c7d79a83a94b674cae2924400932ab7
MD5 b3390e2ead94dd4e2e7e0528eec50350
BLAKE2b-256 a00d8b945987a553f7419c98fb47a580183a373da62fae3705a9145d3bd48566

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page