This package is used for recommendation system
Project description
[![Azure](https://camo.githubusercontent.com/30c5de36c9e0d9daf0d525602d7b904a55ae06fa/68747470733a2f2f6465762e617a7572652e636f6d2f696d62616c616e6365642d6c6561726e2f696d62616c616e6365642d6c6561726e2f5f617069732f6275696c642f7374617475732f7363696b69742d6c6561726e2d636f6e747269622e696d62616c616e6365642d6c6561726e3f6272616e63684e616d653d6d6173746572)](https://dev.azure.com/imbalanced-learn/imbalanced-learn/_build) [![Travis](https://camo.githubusercontent.com/bfbd123c845655541cece8faae04790bad394a5c/68747470733a2f2f7472617669732d63692e6f72672f7363696b69742d6c6561726e2d636f6e747269622f696d62616c616e6365642d6c6561726e2e7376673f6272616e63683d6d6173746572)](https://travis-ci.org/scikit-learn-contrib/imbalanced-learn) [![Codecov](https://camo.githubusercontent.com/0a629df916288dca13b2185c19ee0479a3e6208d/68747470733a2f2f636f6465636f762e696f2f67682f7363696b69742d6c6561726e2d636f6e747269622f696d62616c616e6365642d6c6561726e2f6272616e63682f6d61737465722f67726170682f62616467652e737667) ](https://codecov.io/gh/scikit-learn-contrib/imbalanced-learn)[![CircleCI](https://camo.githubusercontent.com/ab5485169796145c57b4e89a6cc95f71cdaea3f9/68747470733a2f2f636972636c6563692e636f6d2f67682f7363696b69742d6c6561726e2d636f6e747269622f696d62616c616e6365642d6c6561726e2e7376673f7374796c653d736869656c6426636972636c652d746f6b656e3d3a636972636c652d746f6b656e)](https://circleci.com/gh/scikit-learn-contrib/imbalanced-learn/tree/master) [![PythonVersion](https://camo.githubusercontent.com/b6b8563c68b946b41ebbe87c44bac24d63f11107/68747470733a2f2f696d672e736869656c64732e696f2f707970692f707976657273696f6e732f696d62616c616e6365642d6c6561726e2e737667) ](https://img.shields.io/pypi/pyversions/imbalanced-learn.svg)[![Pypi](https://camo.githubusercontent.com/64c26484169cb5203db00183e27ec264b91e0454/68747470733a2f2f62616467652e667572792e696f2f70792f696d62616c616e6365642d6c6561726e2e737667) ](https://badge.fury.io/py/imbalanced-learn)[![Gitter](https://camo.githubusercontent.com/3281e929fd6294f8919b85a27a3638ccccd92932/68747470733a2f2f6261646765732e6769747465722e696d2f7363696b69742d6c6561726e2d636f6e747269622f696d62616c616e6365642d6c6561726e2e737667)](https://gitter.im/scikit-learn-contrib/imbalanced-learn?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
## sklearn-ranking
sklearn-ranking is a python package offering a ranking algorithm.
### Installation
—
#### Dependencies
imbalanced-learn is tested to work under Python 3.6+. The dependency requirements are based on the last scikit-learn release:
scipy(>=0.19.1)
numpy(>=1.13.3)
scikit-learn(>=0.22)
joblib(>=0.11)
keras 2 (optional)
tensorflow (optional)
Additionally, to run the examples, you need matplotlib(>=2.0.0) and pandas(>=0.22).
#### Installation
imbalanced-learn is currently available on the PyPi’s repository and you can install it via pip:
` pip install -U sklearn-ranking `
The package is release also in Anaconda Cloud platform:
` conda install -c conda-forge sklearn-ranking `
If you prefer, you can clone it and run the setup.py file. Use the following commands to get a copy from GitHub and install all dependencies:
` git clone https://github.com/ashishpatel26/sklearn-ranking.git cd sklearn-ranking pip install . `
Or install using pip and GitHub:
` pip install -U git+https://github.com/ashishpatel26/sklearn-ranking.git `
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file sklearn-ranking-0.0.1.tar.gz
.
File metadata
- Download URL: sklearn-ranking-0.0.1.tar.gz
- Upload date:
- Size: 3.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 02ffca0ba021c4b1e622a386add53c98291dc8436ac944467c5d08d56160b21e |
|
MD5 | 4bb0aedc8c728d02c20822c6b770b485 |
|
BLAKE2b-256 | 0f1dc4de44a2e481e2de7719143dba35150805050cdfae0fd8456d56c719e2da |
File details
Details for the file sklearn_ranking-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: sklearn_ranking-0.0.1-py3-none-any.whl
- Upload date:
- Size: 3.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 64452064a5380ed23992152171bd4af48c7d79a83a94b674cae2924400932ab7 |
|
MD5 | b3390e2ead94dd4e2e7e0528eec50350 |
|
BLAKE2b-256 | a00d8b945987a553f7419c98fb47a580183a373da62fae3705a9145d3bd48566 |