scikit-learn compatible classifier based on RRI
Project description
Python package providing scikit-learn compatible classifier based on Reflective Random Indexing (RRI) [1].
Documentation
The documentation is hosted on http://sklearn-rri.readthedocs.io/
Installation
Latest from the source:
git clone https://github.com/cmick/sklearn-rri.git cd sklearn-rri python setup.py install
Using PyPI:
pip install sklearn-rri
Dependencies
sklearn-rri requires:
- NumPy (>= 1.11.0)
- SciPy (>= 0.16.0)
- scikit-learn (>= 0.17.0)
Examples
>>> from sklearn_rri import ReflectiveRandomIndexing >>> from sklearn.random_projection import sparse_random_matrix >>> X = sparse_random_matrix(100, 100, density=0.01, random_state=42) >>> rri = ReflectiveRandomIndexing(50, random_state=42) >>> rri.fit(X) ReflectiveRandomIndexing(n_components=50, n_iter=3, norm=True, random_state=42, seed='auto') >>> rri.transform(X) <100x50 sparse matrix of type '<class 'numpy.float64'>' with 1154 stored elements in Compressed Sparse Row format>
References
[1] Trevor Cohen, Roger Schaneveldt, and Dominic Widdows,, Reflective Random Indexing and Indirect Inference: A Scalable Method for Discovery of Implicit Connections, 2010. https://www.ncbi.nlm.nih.gov/pubmed/19761870
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sklearn-rri-0.1.0.tar.gz
(4.2 kB
view hashes)