Skip to main content

scikit-learn compatible classifier based on RRI

Project description

Python package providing scikit-learn compatible classifier based on Reflective Random Indexing (RRI) [1].

Documentation

The documentation is hosted on http://sklearn-rri.readthedocs.io/

Installation

Latest from the source:

git clone https://github.com/cmick/sklearn-rri.git
cd sklearn-rri
python setup.py install

Using PyPI:

pip install sklearn-rri

Dependencies

sklearn-rri requires:

  • NumPy (>= 1.11.0)
  • SciPy (>= 0.16.0)
  • scikit-learn (>= 0.17.0)

Examples

>>> from sklearn_rri import ReflectiveRandomIndexing
>>> from sklearn.random_projection import sparse_random_matrix
>>> X = sparse_random_matrix(100, 100, density=0.01, random_state=42)
>>> rri = ReflectiveRandomIndexing(50, random_state=42)
>>> rri.fit(X)
ReflectiveRandomIndexing(n_components=50, n_iter=3, norm=True,
        random_state=42, seed='auto')
>>> rri.transform(X)
<100x50 sparse matrix of type '<class 'numpy.float64'>'
        with 1154 stored elements in Compressed Sparse Row format>

References

[1] Trevor Cohen, Roger Schaneveldt, and Dominic Widdows,, Reflective Random Indexing and Indirect Inference: A Scalable Method for Discovery of Implicit Connections, 2010. https://www.ncbi.nlm.nih.gov/pubmed/19761870

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sklearn-rri-0.1.0.tar.gz (4.2 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page