An scikit-learn style implementation of Relevance Vector Machines (RVM).
Project description
Sklearn-RVM
Installation
pip install sklearn-rvm
Requirements
Python (>= 3.5)
Scikit-Learn (>= 0.21)
Documentation
Refer to the documentation to modify the template for your own scikit-learn contribution.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sklearn_rvm-0.1.1.tar.gz
(16.0 kB
view details)
Built Distribution
File details
Details for the file sklearn_rvm-0.1.1.tar.gz
.
File metadata
- Download URL: sklearn_rvm-0.1.1.tar.gz
- Upload date:
- Size: 16.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 93fb6b559ffbdec56ce2a764bddcfe1a2761393c563b3fce941a245d0af39c92 |
|
MD5 | 8b58981b3e9917d20cd2a65ce5bf9ee8 |
|
BLAKE2b-256 | 69ce046b61fc00d2cd1cc88feab95c3469fa9adb1cc356874cba5e4c4f906b34 |
File details
Details for the file sklearn_rvm-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: sklearn_rvm-0.1.1-py3-none-any.whl
- Upload date:
- Size: 38.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aa286482b0936db5f56333caeb107e7cdbc2547026e19a05dcb1d34ab751c3b0 |
|
MD5 | 80e09bb96c01d068d6d0d3f47b3eb847 |
|
BLAKE2b-256 | 723123767252a2e13b5fef18e6effc5bfde843e3267a24f176c15347f4ed92c7 |