Sequence classifiers for scikit-learn
Project description
Convolutional neural network sequence classifier with a scikit-learn interface.
Usage example
Predicting IMDB review sentiments.:
from keras.datasets import imdb from keras.preprocessing import sequence from sequence_classifiers import CNNSequenceClassifier maxlen = 400 (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=5000) x_train = sequence.pad_sequences(x_train, maxlen=maxlen) x_test = sequence.pad_sequences(x_test, maxlen=maxlen) clf = CNNSequenceClassifier(epochs=2) clf.fit(x_train, y_train) print(clf.score(x_test, y_test))
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file sklearn-sequence-classifiers-0.2.tar.gz
.
File metadata
- Download URL: sklearn-sequence-classifiers-0.2.tar.gz
- Upload date:
- Size: 6.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 433ae9b1a1cf3016cc5a7ac1da0e9c0e4852cbe6fb887337e08bc2422ba51a97 |
|
MD5 | dd5a48ee5fb797bc9369c55b6d856ecd |
|
BLAKE2b-256 | 4c3f6197bc01c0e9d3d7cf5052d8d6950812deb374bd4aecd8ff86d69d66f8e1 |
File details
Details for the file sklearn_sequence_classifiers-0.2-py2.py3-none-any.whl
.
File metadata
- Download URL: sklearn_sequence_classifiers-0.2-py2.py3-none-any.whl
- Upload date:
- Size: 8.2 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a196f21de1c0de91702ff162869575358075ce2cda37b8f047c054735e6a2807 |
|
MD5 | c67f226679664d1ee83b751f6c9ba59c |
|
BLAKE2b-256 | 517e7e02eba2500c723fe5c5c2dca185f2ac63a455aaa319c661608a8624745f |