Skip to main content

Surrogate adaptive randomized search for hyper parametersin sklearn.

Project description

Surrogate Search CV

CircleCI PyPi

This package implements a randomized hyper parameter search for sklearn (similar to RandomizedSearchCV) but utilizes surrogate adaptive sampling from pySOT. Use this similarly to GridSearchCV with a few extra paramters.

Usage

pip install sklearn-surrogatesearchcv

The interface is unimaginative, stylistically similar to RandomizedSearchCV.

class SurrogateSearchCV(object):
    """Surrogate search with cross validation for hyper parameter tuning.
    """

    def __init__(self, estimator, n_iter=10, param_def=None, refit=False,
                 **kwargs):
        """
        :param estimator: estimator
        :param n_iter: number of iterations to run (default 10)
        :param param_def: list of dictionaries, e.g.
            [
                {
                    'name': 'alpha',
                    'integer': False,
                    'lb': 0.1,
                    'ub': 0.9,
                },
                {
                    'name': 'max_depth',
                    'integer': True,
                    'lb': 3,
                    'ub': 12,
                }
            ]
        :param **: every other parameter is the same as GridSearchCV
        """

The result can be found in the following properties of the class instance after running.

params_history_
score_history_
best_params_
best_score_

For a complete example, please refer to src/test/test_basic.py.

Resources

A slide about role of surrogate optimization in ml. link

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sklearn_surrogatesearchcv-0.1.3.tar.gz (3.6 kB view details)

Uploaded Source

File details

Details for the file sklearn_surrogatesearchcv-0.1.3.tar.gz.

File metadata

  • Download URL: sklearn_surrogatesearchcv-0.1.3.tar.gz
  • Upload date:
  • Size: 3.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.8.0 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for sklearn_surrogatesearchcv-0.1.3.tar.gz
Algorithm Hash digest
SHA256 4a9a11e76414a14bbb1caa343369cee497b3e50e8ab64f5c95896d1627307149
MD5 ac992956abca2342cd975a1749ea633e
BLAKE2b-256 e90821a385bfdde8b1c4431257511ad30e2be3fc6188c4d8ff3899f0fa959294

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page