Surrogate adaptive randomized search for hyper parametersin sklearn.
Project description
Surrogate Search CV
This package implements a randomized hyper parameter search for sklearn (similar to RandomizedSearchCV
) but utilizes surrogate adaptive sampling from pySOT. Use this similarly to GridSearchCV with a few extra paramters.
Usage
pip install sklearn-surrogatesearchcv
The interface is unimaginative, stylistically similar to RandomizedSearchCV
.
class SurrogateSearchCV(object):
"""Surrogate search with cross validation for hyper parameter tuning.
"""
def __init__(self, estimator, n_iter=10, param_def=None, refit=False,
**kwargs):
"""
:param estimator: estimator
:param n_iter: number of iterations to run (default 10)
:param param_def: list of dictionaries, e.g.
[
{
'name': 'alpha',
'integer': False,
'lb': 0.1,
'ub': 0.9,
},
{
'name': 'max_depth',
'integer': True,
'lb': 3,
'ub': 12,
}
]
:param **: every other parameter is the same as GridSearchCV
"""
The result can be found in the following properties of the class instance after running.
params_history_
score_history_
best_params_
best_score_
For a complete example, please refer to src/test/test_basic.py
.
Resources
A slide about role of surrogate optimization in ml. link
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file sklearn_surrogatesearchcv-0.1.3.tar.gz
.
File metadata
- Download URL: sklearn_surrogatesearchcv-0.1.3.tar.gz
- Upload date:
- Size: 3.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.8.0 tqdm/4.36.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4a9a11e76414a14bbb1caa343369cee497b3e50e8ab64f5c95896d1627307149 |
|
MD5 | ac992956abca2342cd975a1749ea633e |
|
BLAKE2b-256 | e90821a385bfdde8b1c4431257511ad30e2be3fc6188c4d8ff3899f0fa959294 |