Skip to main content

Library for making Weka algorithms available within scikit-learn. Relies on the python-weka-wrapper3 library.

Project description

The sklearn-weka-plugin library integrates Weka algorithms in scikit-learn using Python 3. It makes use of the python-weka-wrapper3 library for handling the Java Virtual Machine.

Examples can be found at:

https://github.com/fracpete/sklearn-weka-plugin-examples

Changelog

0.1.0 (2024-07-12)

  • requiring python-weka-wrapper3 >= 0.3.0 now (jpype-based)

0.0.8 (2024-04-08)

0.0.7 (2023-07-07)

  • WekaEstimator (module sklweka.classifiers) now has a custom score method that distinguishes between classification and regression to return the correct score.

  • renamed data to X and targets to y, since some sklearn schemes use named arguments

  • added dummy argument sample_weight=None to fit, score and fit_predict methods

  • fixed: when supplying Classifier or JBObject instead of classname/options, classname/options now get determined automatically

  • method to_instance (module: sklweka.dataset) now performs correct missing value check

  • method to_nominal_labels (module: sklweka.dataset) generates nicer labels now

0.0.6 (2022-04-26)

  • WekaEstimator (module sklweka.classifiers) and WekaCluster (module sklweka.clusters) now allow specifying how many labels a particular nominal attribute or class attribute has (to avoid error message like Cannot handle unary class attribute! if there is only one label present in a particular split)

0.0.5 (2022-04-01)

  • the to_nominal_attributes method in the sklearn.dataset module requires now the indices parameter (incorrectly declared as optional); can parse a range string now as well

  • fixed the fit, set_params and __str__ methods fo the MakeNominal transformer (module sklweka.preprocessing)

  • WekaEstimator (module sklweka.classifiers) and WekaCluster (module sklweka.clusters) now allow specifying which attributes to turn into nominal ones, which avoids having to manually convert the data (either as list with 0-based indices or range string with 1-based indices)

  • set_params methods now ignore empty dictionaries

0.0.4 (2021-12-17)

  • fixed sorting of labels in to_instances method in module sklweka.dataset

  • redoing X when no class present in load_arff method (module sklweka.dataset)

  • added load_dataset method in module sklweka.dataset that uses Weka to load the data before converting it into sklearn data structures (slower, but more flexible)

0.0.3 (2021-10-26)

  • added support for generating data via Weka’s data generators

0.0.2 (2021-04-12)

  • requiring python-weka-wrapper3 version 0.2.1 at least in order to offer pickle support

0.0.1 (2021-03-28)

  • initial release

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sklearn-weka-plugin-0.1.0.tar.gz (70.1 kB view details)

Uploaded Source

File details

Details for the file sklearn-weka-plugin-0.1.0.tar.gz.

File metadata

  • Download URL: sklearn-weka-plugin-0.1.0.tar.gz
  • Upload date:
  • Size: 70.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for sklearn-weka-plugin-0.1.0.tar.gz
Algorithm Hash digest
SHA256 fdb945290949f5159b05c37c9452b5a9d26c76b177bd35d7d4f7debd8b4882fb
MD5 1a092f2055c384f626c81a41b8ba77a6
BLAKE2b-256 e9f3a60bf7b2f43fc7855482239dd3c50b5f25600b4815ae367e1343e74ef665

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page