Tools of sklearn. Grid Search with multiprocess
Project description
Usage Sample ''''''''''''
.. code:: python
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearntools import train_evaluate, search_model_params
X, y = np.arange(20).reshape((10, 2)), range(10)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
model = RandomForestClassifier(n_estimators=837, bootstrap=False)
train_evaluate(model, X_train, X_test, y_train, y_test)
param_grid = {'n_estimators': np.arange(800, 820, 1), 'bootstrap': [False, True]}
search_model_params(RandomForestClassifier, X_train, X_test, y_train, y_test, param_grid, num_results=3)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sklearntools-1.3.1.tar.gz
(7.4 kB
view details)
File details
Details for the file sklearntools-1.3.1.tar.gz.
File metadata
- Download URL: sklearntools-1.3.1.tar.gz
- Upload date:
- Size: 7.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
647a7e07b599f872276a7b3ee9d7e64e06ca87e3f7d357ad07348d6732cfb068
|
|
| MD5 |
e0e2abd086d8f2931cd72cde08bfe94d
|
|
| BLAKE2b-256 |
384c4f05cf8fd66689313d8b70e2366383dd4a2fb4d4c04780a4245c8b09b26d
|