Skip to main content

Tools of sklearn. Grid Search with multiprocess

Project description

Usage Sample ''''''''''''

.. code:: python

import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearntools import train_evaluate, search_model_params

if __name__ == '__main__':
     X, y = np.arange(20).reshape((10, 2)), range(10)
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

     model = RandomForestClassifier(n_estimators=837, bootstrap=False)
     train_evaluate(model, X_train, X_test, y_train, y_test)

     param_grid = {'n_estimators': np.arange(800, 820, 1), 'bootstrap': [False, True]}
     search_model_params(RandomForestClassifier, X_train, X_test, y_train, y_test, param_grid, result_num=3)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sklearntools-1.1.6.tar.gz (4.2 kB view details)

Uploaded Source

File details

Details for the file sklearntools-1.1.6.tar.gz.

File metadata

  • Download URL: sklearntools-1.1.6.tar.gz
  • Upload date:
  • Size: 4.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for sklearntools-1.1.6.tar.gz
Algorithm Hash digest
SHA256 ade2d1cba8ecc291b826806d9ea5bb4343a0e8f89f57926601bf63467c4a4979
MD5 50faead388644df4929648acd3238f2f
BLAKE2b-256 3800bdd780899871206ee83b9a4c57a11b3e2342deb414cb3b0b5c7e58e7d159

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page