Tools of sklearn. Grid Search with multiprocess
Project description
Usage Sample ''''''''''''
.. code:: python
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearntools import train_evaluate, search_model_params
if __name__ == '__main__':
X, y = np.arange(20).reshape((10, 2)), range(10)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
model = RandomForestClassifier(n_estimators=837, bootstrap=False)
train_evaluate(model, X_train, X_test, y_train, y_test)
param_grid = {'n_estimators': np.arange(800, 820, 1), 'bootstrap': [False, True]}
search_model_params(RandomForestClassifier, X_train, X_test, y_train, y_test, param_grid, result_num=3)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sklearntools-1.2.3.tar.gz
(4.6 kB
view details)
File details
Details for the file sklearntools-1.2.3.tar.gz
.
File metadata
- Download URL: sklearntools-1.2.3.tar.gz
- Upload date:
- Size: 4.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 30b85a6df236e467a5ef85b775b9e30296f2d017c3676af90b8398767974bd7e |
|
MD5 | 9ba2755a23611b1ec91501d1e57a6085 |
|
BLAKE2b-256 | f9bf99707eddbbff46df0ed7a47b78e4b53b783faa63f3a8906ce6534bed31b8 |