Skip to main content

A package for interacting with, visualizing, and benchmarking the SKM-TEA dataset

Project description

Stanford Knee MRI Multi-Task Evaluation (SKM-TEA) Dataset

Paper | Dataset Download | Dataset Docs | Tutorial | About

The 2021 Stanford Knee MRI with Multi-Task Evaluation (SKM-TEA) dataset pairs raw quantitative MRI (qMRI) data, image data, and dense labels of tissues and pathology for end-to-end exploration and evaluation of the MR imaging pipeline.

This repository contains the building blocks for training and benchmarking models with the SKM-TEA dataset, such as PyTorch dataloaders, evaluation metrics, and baselines. It also contains tutorials for using the dataset and codebase. It utilizes Meddlr and PyTorch Lightning for training, evaluation, and machine utilities.

⚡ QuickStart

pip install skm-tea

Installing locally: For local development, fork and clone the repo and run pip install -e ".[dev]"

_Installing from main: For most up-to-date code without a local install, run pip install "skm-tea @ git+https://github.com/StanfordMIMI/skm-tea@main"

Configure your paths and get going!

import meddlr as mr
import os

# (Optional) Configure and save machine/cluster preferences.
# This only has to be done once and will persist across sessions.
cluster = mr.Cluster()
cluster.set(results_dir="/path/to/save/results", data_dir="/path/to/datasets")
cluster.save()
# OR set these as environment variables.
os.environ["MEDDLR_RESULTS_DIR"] = "/path/to/save/results"
os.environ["MEDDLR_DATASETS_DIR"] = "/path/to/datasets"

# TODO: Add how to easily fetch dataset.

📝 Documentation

Documentation for downloading and using the SKM-TEA dataset can be found in DATASET.md. Benchmarks are constantly evolving - check this repository for up-to-date baselines.

🐘 Model Zoo

A list of pre-trained models can be found here and in Google Drive.

To use them, pass the google drive urls for the config and weights (model) files to st.build_deployment_model:

import skm_tea as st

# Make sure to add "download://" before the url!
model = st.get_model_from_zoo(
  cfg_or_file="download://https://drive.google.com/file/d/1DTSfmaGu2X9CpE5qW52ux63QrIs9L0oa/view?usp=sharing",
  weights_path="download://https://drive.google.com/file/d/1no9-COhdT2Ai3yuxXpSYMpE76hbqZTWn/view?usp=sharing",
)

✉️ About

This repository is being developed at the Stanford's MIMI Lab. Please reach out to arjundd [at] stanford [dot] edu if you would like to use or contribute to SKM-TEA.

If you use the SKM-TEA dataset or code, please use the following BibTex:

@inproceedings{desai2021skm,
  title={SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation},
  author={Desai, Arjun D and Schmidt, Andrew M and Rubin, Elka B and Sandino, Christopher Michael and Black, Marianne Susan and Mazzoli, Valentina and Stevens, Kathryn J and Boutin, Robert and Re, Christopher and Gold, Garry E and others},
  booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)},
  year={2021}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skm-tea-0.0.3.tar.gz (136.8 kB view details)

Uploaded Source

Built Distribution

skm_tea-0.0.3-py2.py3-none-any.whl (73.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file skm-tea-0.0.3.tar.gz.

File metadata

  • Download URL: skm-tea-0.0.3.tar.gz
  • Upload date:
  • Size: 136.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.11.3 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.11

File hashes

Hashes for skm-tea-0.0.3.tar.gz
Algorithm Hash digest
SHA256 49a1b27dad58305de87dd5636d04de8753437deb172f7fa49b65e29c2c8e295a
MD5 5801ae78c2fbd6bce0d14151e3cec21c
BLAKE2b-256 299975c8ac8652ad3eec917fea87d194b0ca0e3fa0a1a8ef4890328138bfb76f

See more details on using hashes here.

File details

Details for the file skm_tea-0.0.3-py2.py3-none-any.whl.

File metadata

  • Download URL: skm_tea-0.0.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 73.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.11.3 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.11

File hashes

Hashes for skm_tea-0.0.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 5402423585ec89868f9357d038ac56a5122342d39540e0f9fb44a606d310e0c0
MD5 3fae2f33d314cfdf223dd3ff483e4dbe
BLAKE2b-256 4fca3cf08c3f409784168d27b55fdb4a385dd84651ed458dd6ebcfc03dcbde4a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page