Skip to main content

Fork of https://github.com/scikit-learn-contrib/skope-rules

Project description

Fork of https://github.com/scikit-learn-contrib/skope-rules

AI-vidence corrected some issues and publishes here to allow the deployment of the AntakIA package.

skope-rules

Skope-rules is a Python machine learning module built on top of scikit-learn and distributed under the 3-Clause BSD license.

Skope-rules aims at learning logical, interpretable rules for "scoping" a target class, i.e. detecting with high precision instances of this class.

Skope-rules is a trade off between the interpretability of a Decision Tree and the modelization power of a Random Forest.

See the AUTHORS.rst <AUTHORS.rst>_ file for a list of contributors.

.. image:: schema.png

Installation

You can get the latest sources with pip :

pip install skope-rules

Quick Start

SkopeRules can be used to describe classes with logical rules :

.. code:: python

from sklearn.datasets import load_iris
from skrules import SkopeRules

dataset = load_iris()
feature_names = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']
clf = SkopeRules(max_depth_duplication=2,
                 n_estimators=30,
                 precision_min=0.3,
                 recall_min=0.1,
                 feature_names=feature_names)

for idx, species in enumerate(dataset.target_names):
    X, y = dataset.data, dataset.target
    clf.fit(X, y == idx)
    rules = clf.rules_[0:3]
    print("Rules for iris", species)
    for rule in rules:
        print(rule)
    print()
    print(20*'=')
    print()

::

SkopeRules can also be used as a predictor if you use the "score_top_rules" method :

.. code:: python

from sklearn.datasets import load_boston
from sklearn.metrics import precision_recall_curve
from matplotlib import pyplot as plt
from skrules import SkopeRules

dataset = load_boston()
clf = SkopeRules(max_depth_duplication=None,
                 n_estimators=30,
                 precision_min=0.2,
                 recall_min=0.01,
                 feature_names=dataset.feature_names)

X, y = dataset.data, dataset.target > 25
X_train, y_train = X[:len(y)//2], y[:len(y)//2]
X_test, y_test = X[len(y)//2:], y[len(y)//2:]
clf.fit(X_train, y_train)
y_score = clf.score_top_rules(X_test) # Get a risk score for each test example
precision, recall, _ = precision_recall_curve(y_test, y_score)
plt.plot(recall, precision)
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title('Precision Recall curve')
plt.show()

::

For more examples and use cases please check our documentation <http://skope-rules.readthedocs.io/en/latest/>. You can also check the demonstration notebooks <notebooks/>.

Links with existing literature

The main advantage of decision rules is that they are offering interpretable models. The problem of generating such rules has been widely considered in machine learning, see e.g. RuleFit [1], Slipper [2], LRI [3], MLRules[4].

A decision rule is a logical expression of the form "IF conditions THEN response". In a binary classification setting, if an instance satisfies conditions of the rule, then it is assigned to one of the two classes. If this instance does not satisfy conditions, it remains unassigned.

  1. In [2, 3, 4], rules induction is done by considering each single decision rule as a base classifier in an ensemble, which is built by greedily minimizing some loss function.

  2. In [1], rules are extracted from an ensemble of trees; a weighted combination of these rules is then built by solving a L1-regularized optimization problem over the weights as described in [5].

In this package, we use the second approach. Rules are extracted from tree ensemble, which allow us to take advantage of existing fast algorithms (such as bagged decision trees, or gradient boosting) to produce such tree ensemble. Too similar or duplicated rules are then removed, based on a similarity threshold of their supports.. The main goal of this package is to provide rules verifying precision and recall conditions. It still implement a score (decision_function) method, but which does not solve the L1-regularized optimization problem as in [1]. Instead, weights are simply proportional to the OOB associated precision of the rule.

This package also offers convenient methods to compute predictions with the k most precise rules (cf score_top_rules() and predict_top_rules() functions).

[1] Friedman and Popescu, Predictive learning via rule ensembles,Technical Report, 2005.

[2] Cohen and Singer, A simple, fast, and effective rule learner, National Conference on Artificial Intelligence, 1999.

[3] Weiss and Indurkhya, Lightweight rule induction, ICML, 2000.

[4] Dembczyński, Kotłowski and Słowiński, Maximum Likelihood Rule Ensembles, ICML, 2008.

[5] Friedman and Popescu, Gradient directed regularization, Technical Report, 2004.

Dependencies

skope-rules requires:

  • Python (>= 2.7 or >= 3.3)
  • NumPy (>= 1.10.4)
  • SciPy (>= 0.17.0)
  • Pandas (>= 0.18.1)
  • Scikit-Learn (>= 0.17.1)

For running the examples Matplotlib >= 1.1.1 is required.

Documentation

You can access the full project documentation here <http://skope-rules.readthedocs.io/en/latest/>_

You can also check the notebooks/ folder which contains some examples of utilization.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skope_rules_temp-0.2.6.tar.gz (17.0 kB view details)

Uploaded Source

Built Distribution

skope_rules_temp-0.2.6-py3-none-any.whl (17.8 kB view details)

Uploaded Python 3

File details

Details for the file skope_rules_temp-0.2.6.tar.gz.

File metadata

  • Download URL: skope_rules_temp-0.2.6.tar.gz
  • Upload date:
  • Size: 17.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.12.2 Darwin/23.4.0

File hashes

Hashes for skope_rules_temp-0.2.6.tar.gz
Algorithm Hash digest
SHA256 fc78b647880ceeab100db736ff3939623b1b34b0af69ca41be7c7c8cfae31db0
MD5 96a7635e8a9ea66520a1b6a9cd3145ac
BLAKE2b-256 265a434f05744f2b024d504562480d8efd7aed452d1b0dd74c26e35b0db8b1e2

See more details on using hashes here.

File details

Details for the file skope_rules_temp-0.2.6-py3-none-any.whl.

File metadata

File hashes

Hashes for skope_rules_temp-0.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 965ec3b06071246bda89fb3f81a930c0685562e60cd167183641e4cbd2704c66
MD5 6fce7427e92599b333c721bc36ce376f
BLAKE2b-256 867b63dfc37cacc1371293856d7b804c6eb0d95c50798a368234d2676a41a852

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page