scikit-learn compatible neural network library for pytorch
Project description
.. image:: https://github.com/dnouri/skorch/blob/master/assets/skorch.svg
:width: 30%
======
|build| |coverage| |docs|
A scikit-learn compatible neural network library that wraps PyTorch.
.. |build| image:: https://travis-ci.org/dnouri/skorch.svg?branch=master
:alt: Build Status
:scale: 100%
:target: https://travis-ci.org/dnouri/skorch?branch=master
.. |coverage| image:: https://github.com/dnouri/skorch/blob/master/assets/coverage.svg
:alt: Test Coverage
:scale: 100%
.. |docs| image:: https://readthedocs.org/projects/skorch/badge/?version=latest
:alt: Documentation Status
:scale: 100%
:target: https://skorch.readthedocs.io/en/latest/?badge=latest
Resources:
- `Documentation <https://skorch.readthedocs.io/en/latest/?badge=latest>`_
- `Source Code <https://github.com/dnouri/skorch/>`_
Example
-------
To see a more elaborate example, look `here
<https://github.com/dnouri/skorch/tree/master/notebooks/README.md>`__.
.. code:: python
import numpy as np
from sklearn.datasets import make_classification
import torch
from torch import nn
import torch.nn.functional as F
from skorch.net import NeuralNetClassifier
X, y = make_classification(1000, 20, n_informative=10, random_state=0)
X = X.astype(np.float32)
class MyModule(nn.Module):
def __init__(self, num_units=10, nonlin=F.relu):
super(MyModule, self).__init__()
self.dense0 = nn.Linear(20, num_units)
self.nonlin = nonlin
self.dropout = nn.Dropout(0.5)
self.dense1 = nn.Linear(num_units, 10)
self.output = nn.Linear(10, 2)
def forward(self, X, **kwargs):
X = self.nonlin(self.dense0(X))
X = self.dropout(X)
X = F.relu(self.dense1(X))
X = F.softmax(self.output(X), dim=-1)
return X
net = NeuralNetClassifier(
MyModule,
max_epochs=10,
lr=0.1,
)
net.fit(X, y)
y_proba = net.predict_proba(X)
In an sklearn Pipeline:
.. code:: python
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
pipe = Pipeline([
('scale', StandardScaler()),
('net', net),
])
pipe.fit(X, y)
y_proba = pipe.predict_proba(X)
With grid search
.. code:: python
from sklearn.model_selection import GridSearchCV
params = {
'lr': [0.01, 0.02],
'max_epochs': [10, 20],
'module__num_units': [10, 20],
}
gs = GridSearchCV(net, params, refit=False, cv=3, scoring='accuracy')
gs.fit(X, y)
print(gs.best_score_, gs.best_params_)
Installation
------------
pip installation
~~~~~~~~~~~~~~~~
To install with pip, run:
.. code:: bash
pip install -U skorch
We recommend to use a virtual environment for this.
>From source
~~~~~~~~~~~
If you would like to use the must recent additions to skorch or
help development, you should install skorch from source.
Using conda
^^^^^^^^^^^
You need a working conda installation. Get the correct miniconda for
your system from `here <https://conda.io/miniconda.html>`__.
If you just want to use skorch, use:
.. code:: bash
git clone https://github.com/dnouri/skorch.git
cd skorch
conda env create
source activate skorch
# install pytorch version for your system (see below)
python setup.py install
If you want to help developing, run:
.. code:: bash
git clone https://github.com/dnouri/skorch.git
cd skorch
conda env create
source activate skorch
# install pytorch version for your system (see below)
conda install --file requirements-dev.txt
python setup.py develop
py.test # unit tests
pylint skorch # static code checks
Using pip
^^^^^^^^^
If you just want to use skorch, use:
.. code:: bash
git clone https://github.com/dnouri/skorch.git
cd skorch
# create and activate a virtual environment
pip install -r requirements.txt
# install pytorch version for your system (see below)
python setup.py install
If you want to help developing, run:
.. code:: bash
git clone https://github.com/dnouri/skorch.git
cd skorch
# create and activate a virtual environment
pip install -r requirements.txt
# install pytorch version for your system (see below)
pip install -r requirements-dev.txt
python setup.py develop
py.test # unit tests
pylint skorch # static code checks
PyTorch
~~~~~~~
PyTorch is not covered by the dependencies, since the PyTorch
version you need is dependent on your system. For installation
instructions for PyTorch, visit the `PyTorch website
<http://pytorch.org/>`__.
In general, this should work (assuming CUDA 9):
.. code:: bash
# using conda:
conda install pytorch cuda90 -c pytorch
# using pip
pip install http://download.pytorch.org/whl/cu90/torch-0.3.0.post4-cp36-cp36m-linux_x86_64.whl
:width: 30%
======
|build| |coverage| |docs|
A scikit-learn compatible neural network library that wraps PyTorch.
.. |build| image:: https://travis-ci.org/dnouri/skorch.svg?branch=master
:alt: Build Status
:scale: 100%
:target: https://travis-ci.org/dnouri/skorch?branch=master
.. |coverage| image:: https://github.com/dnouri/skorch/blob/master/assets/coverage.svg
:alt: Test Coverage
:scale: 100%
.. |docs| image:: https://readthedocs.org/projects/skorch/badge/?version=latest
:alt: Documentation Status
:scale: 100%
:target: https://skorch.readthedocs.io/en/latest/?badge=latest
Resources:
- `Documentation <https://skorch.readthedocs.io/en/latest/?badge=latest>`_
- `Source Code <https://github.com/dnouri/skorch/>`_
Example
-------
To see a more elaborate example, look `here
<https://github.com/dnouri/skorch/tree/master/notebooks/README.md>`__.
.. code:: python
import numpy as np
from sklearn.datasets import make_classification
import torch
from torch import nn
import torch.nn.functional as F
from skorch.net import NeuralNetClassifier
X, y = make_classification(1000, 20, n_informative=10, random_state=0)
X = X.astype(np.float32)
class MyModule(nn.Module):
def __init__(self, num_units=10, nonlin=F.relu):
super(MyModule, self).__init__()
self.dense0 = nn.Linear(20, num_units)
self.nonlin = nonlin
self.dropout = nn.Dropout(0.5)
self.dense1 = nn.Linear(num_units, 10)
self.output = nn.Linear(10, 2)
def forward(self, X, **kwargs):
X = self.nonlin(self.dense0(X))
X = self.dropout(X)
X = F.relu(self.dense1(X))
X = F.softmax(self.output(X), dim=-1)
return X
net = NeuralNetClassifier(
MyModule,
max_epochs=10,
lr=0.1,
)
net.fit(X, y)
y_proba = net.predict_proba(X)
In an sklearn Pipeline:
.. code:: python
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
pipe = Pipeline([
('scale', StandardScaler()),
('net', net),
])
pipe.fit(X, y)
y_proba = pipe.predict_proba(X)
With grid search
.. code:: python
from sklearn.model_selection import GridSearchCV
params = {
'lr': [0.01, 0.02],
'max_epochs': [10, 20],
'module__num_units': [10, 20],
}
gs = GridSearchCV(net, params, refit=False, cv=3, scoring='accuracy')
gs.fit(X, y)
print(gs.best_score_, gs.best_params_)
Installation
------------
pip installation
~~~~~~~~~~~~~~~~
To install with pip, run:
.. code:: bash
pip install -U skorch
We recommend to use a virtual environment for this.
>From source
~~~~~~~~~~~
If you would like to use the must recent additions to skorch or
help development, you should install skorch from source.
Using conda
^^^^^^^^^^^
You need a working conda installation. Get the correct miniconda for
your system from `here <https://conda.io/miniconda.html>`__.
If you just want to use skorch, use:
.. code:: bash
git clone https://github.com/dnouri/skorch.git
cd skorch
conda env create
source activate skorch
# install pytorch version for your system (see below)
python setup.py install
If you want to help developing, run:
.. code:: bash
git clone https://github.com/dnouri/skorch.git
cd skorch
conda env create
source activate skorch
# install pytorch version for your system (see below)
conda install --file requirements-dev.txt
python setup.py develop
py.test # unit tests
pylint skorch # static code checks
Using pip
^^^^^^^^^
If you just want to use skorch, use:
.. code:: bash
git clone https://github.com/dnouri/skorch.git
cd skorch
# create and activate a virtual environment
pip install -r requirements.txt
# install pytorch version for your system (see below)
python setup.py install
If you want to help developing, run:
.. code:: bash
git clone https://github.com/dnouri/skorch.git
cd skorch
# create and activate a virtual environment
pip install -r requirements.txt
# install pytorch version for your system (see below)
pip install -r requirements-dev.txt
python setup.py develop
py.test # unit tests
pylint skorch # static code checks
PyTorch
~~~~~~~
PyTorch is not covered by the dependencies, since the PyTorch
version you need is dependent on your system. For installation
instructions for PyTorch, visit the `PyTorch website
<http://pytorch.org/>`__.
In general, this should work (assuming CUDA 9):
.. code:: bash
# using conda:
conda install pytorch cuda90 -c pytorch
# using pip
pip install http://download.pytorch.org/whl/cu90/torch-0.3.0.post4-cp36-cp36m-linux_x86_64.whl
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
skorch-0.1.0.post1.tar.gz
(41.4 kB
view details)
Built Distribution
File details
Details for the file skorch-0.1.0.post1.tar.gz
.
File metadata
- Download URL: skorch-0.1.0.post1.tar.gz
- Upload date:
- Size: 41.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d1903dbc621c4d39cee3708bb8b4c4fcc3d1ce769edf60f718780f6ddc9148c7 |
|
MD5 | 8b86db94199cd08d68089a85a11a2f9e |
|
BLAKE2b-256 | 6e14eb6255b4a4e3472983b25ed21b5305b2d2d4c41dc3049d75286cbe0fd247 |
File details
Details for the file skorch-0.1.0.post1-py3-none-any.whl
.
File metadata
- Download URL: skorch-0.1.0.post1-py3-none-any.whl
- Upload date:
- Size: 48.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 485d024fcb0131099b68c36205b50149fc1f0d7eeee8cdbc704cb2ee01f5a5ce |
|
MD5 | 77fd6f5cdbe7bf648ab2597cb6e707e1 |
|
BLAKE2b-256 | f2be472f2b485404004fcf1924c92b2f1e6eddef56eb3b403978eb421051bb23 |