Skip to main content

scikit-learn compatible neural network library for pytorch

Project description

.. image:: https://github.com/dnouri/skorch/blob/master/assets/skorch.svg
:width: 30%

------------

|build| |coverage| |docs| |powered|

A scikit-learn compatible neural network library that wraps PyTorch.

.. |build| image:: https://travis-ci.org/dnouri/skorch.svg?branch=master
:alt: Build Status
:scale: 100%
:target: https://travis-ci.org/dnouri/skorch?branch=master

.. |coverage| image:: https://github.com/dnouri/skorch/blob/master/assets/coverage.svg
:alt: Test Coverage
:scale: 100%

.. |docs| image:: https://readthedocs.org/projects/skorch/badge/?version=latest
:alt: Documentation Status
:scale: 100%
:target: https://skorch.readthedocs.io/en/latest/?badge=latest

.. |powered| image:: https://github.com/dnouri/skorch/blob/master/assets/powered.svg
:alt: Powered by
:scale: 100%
:target: https://github.com/ottogroup/

=========
Resources
=========

- `Documentation <https://skorch.readthedocs.io/en/latest/?badge=latest>`_
- `Source Code <https://github.com/dnouri/skorch/>`_

=======
Example
=======

To see a more elaborate example, look `here
<https://github.com/dnouri/skorch/tree/master/notebooks/README.md>`__.

.. code:: python

import numpy as np
from sklearn.datasets import make_classification
from torch import nn
import torch.nn.functional as F

from skorch import NeuralNetClassifier


X, y = make_classification(1000, 20, n_informative=10, random_state=0)
X = X.astype(np.float32)
y = y.astype(np.int64)

class MyModule(nn.Module):
def __init__(self, num_units=10, nonlin=F.relu):
super(MyModule, self).__init__()

self.dense0 = nn.Linear(20, num_units)
self.nonlin = nonlin
self.dropout = nn.Dropout(0.5)
self.dense1 = nn.Linear(num_units, 10)
self.output = nn.Linear(10, 2)

def forward(self, X, **kwargs):
X = self.nonlin(self.dense0(X))
X = self.dropout(X)
X = F.relu(self.dense1(X))
X = F.softmax(self.output(X), dim=-1)
return X


net = NeuralNetClassifier(
MyModule,
max_epochs=10,
lr=0.1,
)

net.fit(X, y)
y_proba = net.predict_proba(X)

In an sklearn Pipeline:

.. code:: python

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler


pipe = Pipeline([
('scale', StandardScaler()),
('net', net),
])

pipe.fit(X, y)
y_proba = pipe.predict_proba(X)

With grid search

.. code:: python

from sklearn.model_selection import GridSearchCV


params = {
'lr': [0.01, 0.02],
'max_epochs': [10, 20],
'module__num_units': [10, 20],
}
gs = GridSearchCV(net, params, refit=False, cv=3, scoring='accuracy')

gs.fit(X, y)
print(gs.best_score_, gs.best_params_)

============
Installation
============

pip installation
================

To install with pip, run:

.. code:: bash

pip install -U skorch

We recommend to use a virtual environment for this.

>From source
===========

If you would like to use the must recent additions to skorch or
help development, you should install skorch from source.

Using conda
===========

You need a working conda installation. Get the correct miniconda for
your system from `here <https://conda.io/miniconda.html>`__.

If you just want to use skorch, use:

.. code:: bash

git clone https://github.com/dnouri/skorch.git
cd skorch
conda env create
source activate skorch
# install pytorch version for your system (see below)
python setup.py install

If you want to help developing, run:

.. code:: bash

git clone https://github.com/dnouri/skorch.git
cd skorch
conda env create
source activate skorch
# install pytorch version for your system (see below)
conda install --file requirements-dev.txt
python setup.py develop

py.test # unit tests
pylint skorch # static code checks

Using pip
=========

If you just want to use skorch, use:

.. code:: bash

git clone https://github.com/dnouri/skorch.git
cd skorch
# create and activate a virtual environment
pip install -r requirements.txt
# install pytorch version for your system (see below)
python setup.py install

If you want to help developing, run:

.. code:: bash

git clone https://github.com/dnouri/skorch.git
cd skorch
# create and activate a virtual environment
pip install -r requirements.txt
# install pytorch version for your system (see below)
pip install -r requirements-dev.txt
python setup.py develop

py.test # unit tests
pylint skorch # static code checks

PyTorch
=======

PyTorch is not covered by the dependencies, since the PyTorch
version you need is dependent on your system. For installation
instructions for PyTorch, visit the `PyTorch website
<http://pytorch.org/>`__.

In general, this should work (assuming CUDA 9):

.. code:: bash

# using conda:
conda install pytorch cuda90 -c pytorch
# using pip
pip install torch

=============
Communication
=============

- `GitHub issues <https://github.com/dnouri/skorch/issues>`_: bug
reports, feature requests, install issues, RFCs, thoughts, etc.

- Slack: We run the #skorch channel on the `PyTorch Slack server
<https://pytorch.slack.com/>`_. If you need an invite, send an
email to daniel.nouri@gmail.com.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

skorch-0.4.0-py3-none-any.whl (89.1 kB view details)

Uploaded Python 3

File details

Details for the file skorch-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: skorch-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 89.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.9.1 pkginfo/1.4.1 requests/2.18.4 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.14.0 CPython/3.6.1

File hashes

Hashes for skorch-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3d8fb2b0f15457fc19693b77b8721c359d3071d24b24e9b38796d51fd0f6a766
MD5 62fa32410a93d40e7c2ee0d44412456b
BLAKE2b-256 529e6a1f51fe538005d4fc2b28c270ffa0a2186ee4de345428811823bb4ba6eb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page