scikit-learn compatible neural network library for pytorch
Project description
.. image:: https://github.com/dnouri/skorch/blob/master/assets/skorch.svg
:width: 30%
------------
|build| |coverage| |docs| |powered|
A scikit-learn compatible neural network library that wraps PyTorch.
.. |build| image:: https://travis-ci.org/dnouri/skorch.svg?branch=master
:alt: Build Status
:scale: 100%
:target: https://travis-ci.org/dnouri/skorch?branch=master
.. |coverage| image:: https://github.com/dnouri/skorch/blob/master/assets/coverage.svg
:alt: Test Coverage
:scale: 100%
.. |docs| image:: https://readthedocs.org/projects/skorch/badge/?version=latest
:alt: Documentation Status
:scale: 100%
:target: https://skorch.readthedocs.io/en/latest/?badge=latest
.. |powered| image:: https://github.com/dnouri/skorch/blob/master/assets/powered.svg
:alt: Powered by
:scale: 100%
:target: https://github.com/ottogroup/
=========
Resources
=========
- `Documentation <https://skorch.readthedocs.io/en/latest/?badge=latest>`_
- `Source Code <https://github.com/dnouri/skorch/>`_
========
Examples
========
To see more elaborate examples, look `here
<https://github.com/dnouri/skorch/tree/master/notebooks/README.md>`__.
.. code:: python
import numpy as np
from sklearn.datasets import make_classification
from torch import nn
import torch.nn.functional as F
from skorch import NeuralNetClassifier
X, y = make_classification(1000, 20, n_informative=10, random_state=0)
X = X.astype(np.float32)
y = y.astype(np.int64)
class MyModule(nn.Module):
def __init__(self, num_units=10, nonlin=F.relu):
super(MyModule, self).__init__()
self.dense0 = nn.Linear(20, num_units)
self.nonlin = nonlin
self.dropout = nn.Dropout(0.5)
self.dense1 = nn.Linear(num_units, 10)
self.output = nn.Linear(10, 2)
def forward(self, X, **kwargs):
X = self.nonlin(self.dense0(X))
X = self.dropout(X)
X = F.relu(self.dense1(X))
X = F.softmax(self.output(X), dim=-1)
return X
net = NeuralNetClassifier(
MyModule,
max_epochs=10,
lr=0.1,
)
net.fit(X, y)
y_proba = net.predict_proba(X)
In an sklearn Pipeline:
.. code:: python
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
pipe = Pipeline([
('scale', StandardScaler()),
('net', net),
])
pipe.fit(X, y)
y_proba = pipe.predict_proba(X)
With grid search
.. code:: python
from sklearn.model_selection import GridSearchCV
params = {
'lr': [0.01, 0.02],
'max_epochs': [10, 20],
'module__num_units': [10, 20],
}
gs = GridSearchCV(net, params, refit=False, cv=3, scoring='accuracy')
gs.fit(X, y)
print(gs.best_score_, gs.best_params_)
skorch also provides many convenient features, among others:
- `Learning rate schedulers <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.LRScheduler>`_ (Warm restarts, cyclic LR and many more)
- `Scoring using sklearn (and custom) scoring functions <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.EpochScoring>`_
- `Early stopping <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.EarlyStopping>`_
- `Checkpointing <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.Checkpoint>`_
- `Parameter freezing/unfreezing <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.Freezer>`_
- `Progress bar <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.ProgressBar>`_ (for CLI as well as jupyter)
- `Automatic inference of CLI parameters <https://github.com/dnouri/skorch/tree/master/examples/cli>`_
============
Installation
============
skorch requires Python 3.5 or higher.
pip installation
================
To install with pip, run:
.. code:: bash
pip install -U skorch
We recommend to use a virtual environment for this.
From source
===========
If you would like to use the must recent additions to skorch or
help development, you should install skorch from source.
Using conda
===========
You need a working conda installation. Get the correct miniconda for
your system from `here <https://conda.io/miniconda.html>`__.
If you just want to use skorch, use:
.. code:: bash
git clone https://github.com/dnouri/skorch.git
cd skorch
conda env create
source activate skorch
# install pytorch version for your system (see below)
python setup.py install
If you want to help developing, run:
.. code:: bash
git clone https://github.com/dnouri/skorch.git
cd skorch
conda env create
source activate skorch
# install pytorch version for your system (see below)
conda install --file requirements-dev.txt
python setup.py develop
py.test # unit tests
pylint skorch # static code checks
Using pip
=========
If you just want to use skorch, use:
.. code:: bash
git clone https://github.com/dnouri/skorch.git
cd skorch
# create and activate a virtual environment
pip install -r requirements.txt
# install pytorch version for your system (see below)
python setup.py install
If you want to help developing, run:
.. code:: bash
git clone https://github.com/dnouri/skorch.git
cd skorch
# create and activate a virtual environment
pip install -r requirements.txt
# install pytorch version for your system (see below)
pip install -r requirements-dev.txt
python setup.py develop
py.test # unit tests
pylint skorch # static code checks
PyTorch
=======
PyTorch is not covered by the dependencies, since the PyTorch
version you need is dependent on your system. For installation
instructions for PyTorch, visit the `PyTorch website
<http://pytorch.org/>`__.
In general, this should work (assuming CUDA 9):
.. code:: bash
# using conda:
conda install pytorch -c pytorch
# using pip
pip install torch
=============
Communication
=============
- `GitHub issues <https://github.com/dnouri/skorch/issues>`_: bug
reports, feature requests, install issues, RFCs, thoughts, etc.
- Slack: We run the #skorch channel on the `PyTorch Slack server
<https://pytorch.slack.com/>`_. If you need an invite, send an
email to daniel.nouri@gmail.com.
:width: 30%
------------
|build| |coverage| |docs| |powered|
A scikit-learn compatible neural network library that wraps PyTorch.
.. |build| image:: https://travis-ci.org/dnouri/skorch.svg?branch=master
:alt: Build Status
:scale: 100%
:target: https://travis-ci.org/dnouri/skorch?branch=master
.. |coverage| image:: https://github.com/dnouri/skorch/blob/master/assets/coverage.svg
:alt: Test Coverage
:scale: 100%
.. |docs| image:: https://readthedocs.org/projects/skorch/badge/?version=latest
:alt: Documentation Status
:scale: 100%
:target: https://skorch.readthedocs.io/en/latest/?badge=latest
.. |powered| image:: https://github.com/dnouri/skorch/blob/master/assets/powered.svg
:alt: Powered by
:scale: 100%
:target: https://github.com/ottogroup/
=========
Resources
=========
- `Documentation <https://skorch.readthedocs.io/en/latest/?badge=latest>`_
- `Source Code <https://github.com/dnouri/skorch/>`_
========
Examples
========
To see more elaborate examples, look `here
<https://github.com/dnouri/skorch/tree/master/notebooks/README.md>`__.
.. code:: python
import numpy as np
from sklearn.datasets import make_classification
from torch import nn
import torch.nn.functional as F
from skorch import NeuralNetClassifier
X, y = make_classification(1000, 20, n_informative=10, random_state=0)
X = X.astype(np.float32)
y = y.astype(np.int64)
class MyModule(nn.Module):
def __init__(self, num_units=10, nonlin=F.relu):
super(MyModule, self).__init__()
self.dense0 = nn.Linear(20, num_units)
self.nonlin = nonlin
self.dropout = nn.Dropout(0.5)
self.dense1 = nn.Linear(num_units, 10)
self.output = nn.Linear(10, 2)
def forward(self, X, **kwargs):
X = self.nonlin(self.dense0(X))
X = self.dropout(X)
X = F.relu(self.dense1(X))
X = F.softmax(self.output(X), dim=-1)
return X
net = NeuralNetClassifier(
MyModule,
max_epochs=10,
lr=0.1,
)
net.fit(X, y)
y_proba = net.predict_proba(X)
In an sklearn Pipeline:
.. code:: python
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
pipe = Pipeline([
('scale', StandardScaler()),
('net', net),
])
pipe.fit(X, y)
y_proba = pipe.predict_proba(X)
With grid search
.. code:: python
from sklearn.model_selection import GridSearchCV
params = {
'lr': [0.01, 0.02],
'max_epochs': [10, 20],
'module__num_units': [10, 20],
}
gs = GridSearchCV(net, params, refit=False, cv=3, scoring='accuracy')
gs.fit(X, y)
print(gs.best_score_, gs.best_params_)
skorch also provides many convenient features, among others:
- `Learning rate schedulers <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.LRScheduler>`_ (Warm restarts, cyclic LR and many more)
- `Scoring using sklearn (and custom) scoring functions <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.EpochScoring>`_
- `Early stopping <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.EarlyStopping>`_
- `Checkpointing <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.Checkpoint>`_
- `Parameter freezing/unfreezing <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.Freezer>`_
- `Progress bar <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.ProgressBar>`_ (for CLI as well as jupyter)
- `Automatic inference of CLI parameters <https://github.com/dnouri/skorch/tree/master/examples/cli>`_
============
Installation
============
skorch requires Python 3.5 or higher.
pip installation
================
To install with pip, run:
.. code:: bash
pip install -U skorch
We recommend to use a virtual environment for this.
From source
===========
If you would like to use the must recent additions to skorch or
help development, you should install skorch from source.
Using conda
===========
You need a working conda installation. Get the correct miniconda for
your system from `here <https://conda.io/miniconda.html>`__.
If you just want to use skorch, use:
.. code:: bash
git clone https://github.com/dnouri/skorch.git
cd skorch
conda env create
source activate skorch
# install pytorch version for your system (see below)
python setup.py install
If you want to help developing, run:
.. code:: bash
git clone https://github.com/dnouri/skorch.git
cd skorch
conda env create
source activate skorch
# install pytorch version for your system (see below)
conda install --file requirements-dev.txt
python setup.py develop
py.test # unit tests
pylint skorch # static code checks
Using pip
=========
If you just want to use skorch, use:
.. code:: bash
git clone https://github.com/dnouri/skorch.git
cd skorch
# create and activate a virtual environment
pip install -r requirements.txt
# install pytorch version for your system (see below)
python setup.py install
If you want to help developing, run:
.. code:: bash
git clone https://github.com/dnouri/skorch.git
cd skorch
# create and activate a virtual environment
pip install -r requirements.txt
# install pytorch version for your system (see below)
pip install -r requirements-dev.txt
python setup.py develop
py.test # unit tests
pylint skorch # static code checks
PyTorch
=======
PyTorch is not covered by the dependencies, since the PyTorch
version you need is dependent on your system. For installation
instructions for PyTorch, visit the `PyTorch website
<http://pytorch.org/>`__.
In general, this should work (assuming CUDA 9):
.. code:: bash
# using conda:
conda install pytorch -c pytorch
# using pip
pip install torch
=============
Communication
=============
- `GitHub issues <https://github.com/dnouri/skorch/issues>`_: bug
reports, feature requests, install issues, RFCs, thoughts, etc.
- Slack: We run the #skorch channel on the `PyTorch Slack server
<https://pytorch.slack.com/>`_. If you need an invite, send an
email to daniel.nouri@gmail.com.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
skorch-0.5.0.tar.gz
(86.0 kB
view details)
Built Distributions
skorch-0.5.0-py3.6.egg
(245.3 kB
view details)
skorch-0.5.0-py3-none-any.whl
(99.7 kB
view details)
File details
Details for the file skorch-0.5.0.tar.gz
.
File metadata
- Download URL: skorch-0.5.0.tar.gz
- Upload date:
- Size: 86.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/27.2.0 requests-toolbelt/0.8.0 tqdm/4.14.0 CPython/3.6.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1ec8c9144da95a633ff13db8b769011ff958cdc5c2b4cff09ada8f9a4e6fb6a6 |
|
MD5 | 4f4f3bc8222817837bdc5f82f39ef96d |
|
BLAKE2b-256 | 9b4a94661d27e6ac6e6ec14d1f2fd1fc03aa3d5226388ce1c8caf848132bbc39 |
File details
Details for the file skorch-0.5.0-py3.6.egg
.
File metadata
- Download URL: skorch-0.5.0-py3.6.egg
- Upload date:
- Size: 245.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/27.2.0 requests-toolbelt/0.8.0 tqdm/4.14.0 CPython/3.6.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 826cc8138e992cecf7ea3be7d1e64fd1603ff1f9aefa50a0d57ebbb229559279 |
|
MD5 | cf67080d7ba3beb048f4452bc602afdf |
|
BLAKE2b-256 | 473e9555482e43c8e4e7b11d19c52941385866031bb7368cc7c9fc6d742a3feb |
File details
Details for the file skorch-0.5.0-py3-none-any.whl
.
File metadata
- Download URL: skorch-0.5.0-py3-none-any.whl
- Upload date:
- Size: 99.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/27.2.0 requests-toolbelt/0.8.0 tqdm/4.14.0 CPython/3.6.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 154e24e6cbd608cc41cbc8c515e980390c46a52b8380958d2f590205cd1f7674 |
|
MD5 | e5d75d15c25ec61de0a176f3ad9d36ec |
|
BLAKE2b-256 | 60e8ba5c79709b1e4381f15889662c9937442af5e85d6780bbf246053082bfc4 |