scikit-learn compatible neural network library for pytorch
Project description
.. image:: https://github.com/skorch-dev/skorch/blob/master/assets/skorch.svg
:width: 30%
------------
|build| |coverage| |docs| |powered|
A scikit-learn compatible neural network library that wraps PyTorch.
.. |build| image:: https://api.travis-ci.org/skorch-dev/skorch.svg?branch=master
:alt: Build Status
:scale: 100%
:target: https://travis-ci.org/skorch-dev/skorch?branch=master
.. |coverage| image:: https://github.com/skorch-dev/skorch/blob/master/assets/coverage.svg
:alt: Test Coverage
:scale: 100%
.. |docs| image:: https://readthedocs.org/projects/skorch/badge/?version=latest
:alt: Documentation Status
:scale: 100%
:target: https://skorch.readthedocs.io/en/latest/?badge=latest
.. |powered| image:: https://github.com/skorch-dev/skorch/blob/master/assets/powered.svg
:alt: Powered by
:scale: 100%
:target: https://github.com/ottogroup/
=========
Resources
=========
- `Documentation <https://skorch.readthedocs.io/en/latest/?badge=latest>`_
- `Source Code <https://github.com/skorch-dev/skorch/>`_
========
Examples
========
To see more elaborate examples, look `here
<https://github.com/skorch-dev/skorch/tree/master/notebooks/README.md>`__.
.. code:: python
import numpy as np
from sklearn.datasets import make_classification
from torch import nn
import torch.nn.functional as F
from skorch import NeuralNetClassifier
X, y = make_classification(1000, 20, n_informative=10, random_state=0)
X = X.astype(np.float32)
y = y.astype(np.int64)
class MyModule(nn.Module):
def __init__(self, num_units=10, nonlin=F.relu):
super(MyModule, self).__init__()
self.dense0 = nn.Linear(20, num_units)
self.nonlin = nonlin
self.dropout = nn.Dropout(0.5)
self.dense1 = nn.Linear(num_units, 10)
self.output = nn.Linear(10, 2)
def forward(self, X, **kwargs):
X = self.nonlin(self.dense0(X))
X = self.dropout(X)
X = F.relu(self.dense1(X))
X = F.softmax(self.output(X), dim=-1)
return X
net = NeuralNetClassifier(
MyModule,
max_epochs=10,
lr=0.1,
# Shuffle training data on each epoch
iterator_train__shuffle=True,
)
net.fit(X, y)
y_proba = net.predict_proba(X)
In an sklearn Pipeline:
.. code:: python
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
pipe = Pipeline([
('scale', StandardScaler()),
('net', net),
])
pipe.fit(X, y)
y_proba = pipe.predict_proba(X)
With grid search
.. code:: python
from sklearn.model_selection import GridSearchCV
params = {
'lr': [0.01, 0.02],
'max_epochs': [10, 20],
'module__num_units': [10, 20],
}
gs = GridSearchCV(net, params, refit=False, cv=3, scoring='accuracy')
gs.fit(X, y)
print(gs.best_score_, gs.best_params_)
skorch also provides many convenient features, among others:
- `Learning rate schedulers <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.LRScheduler>`_ (Warm restarts, cyclic LR and many more)
- `Scoring using sklearn (and custom) scoring functions <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.EpochScoring>`_
- `Early stopping <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.EarlyStopping>`_
- `Checkpointing <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.Checkpoint>`_
- `Parameter freezing/unfreezing <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.Freezer>`_
- `Progress bar <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.ProgressBar>`_ (for CLI as well as jupyter)
- `Automatic inference of CLI parameters <https://github.com/skorch-dev/skorch/tree/master/examples/cli>`_
============
Installation
============
skorch requires Python 3.5 or higher.
pip installation
================
To install with pip, run:
.. code:: bash
pip install -U skorch
We recommend to use a virtual environment for this.
From source
===========
If you would like to use the must recent additions to skorch or
help development, you should install skorch from source:
.. code:: bash
git clone https://github.com/skorch-dev/skorch.git
cd skorch
# install pytorch version for your system (see below)
python setup.py install
Using conda
===========
You need a working conda installation. Get the correct miniconda for
your system from `here <https://conda.io/miniconda.html>`__.
You can also install skorch through the conda-forge channel.
The instructions for doing so are
available `here <https://github.com/conda-forge/skorch-feedstock>`__.
**Note**: The conda channel is _not_ managed by the skorch maintainers.
If you do not want to use conda-forge, you may install skorch using:
.. code:: bash
git clone https://github.com/skorch-dev/skorch.git
cd skorch
conda env create
source activate skorch
# install pytorch version for your system (see below)
python setup.py install
If you want to help developing, run:
.. code:: bash
git clone https://github.com/skorch-dev/skorch.git
cd skorch
conda env create
source activate skorch
# install pytorch version for your system (see below)
conda install -c conda-forge --file requirements-dev.txt
python setup.py develop
py.test # unit tests
pylint skorch # static code checks
Using pip
=========
If you just want to use skorch, use:
.. code:: bash
git clone https://github.com/skorch-dev/skorch.git
cd skorch
# create and activate a virtual environment
pip install -r requirements.txt
# install pytorch version for your system (see below)
python setup.py install
If you want to help developing, run:
.. code:: bash
git clone https://github.com/skorch-dev/skorch.git
cd skorch
# create and activate a virtual environment
pip install -r requirements.txt
# install pytorch version for your system (see below)
pip install -r requirements-dev.txt
python setup.py develop
py.test # unit tests
pylint skorch # static code checks
PyTorch
=======
PyTorch is not covered by the dependencies, since the PyTorch version
you need is dependent on your system. For installation instructions
for PyTorch, visit the `PyTorch website
<http://pytorch.org/>`__. skorch officially supports the following
PyTorch versions:
- 1.1.0
- 1.2.0
- 1.3.1
- 1.4.0
In general, this should work (assuming CUDA 9):
.. code:: bash
# using conda:
conda install pytorch cudatoolkit=9.0 -c pytorch
# using pip
pip install torch
=============
Communication
=============
- `GitHub issues <https://github.com/skorch-dev/skorch/issues>`_: bug
reports, feature requests, install issues, RFCs, thoughts, etc.
- Slack: We run the #skorch channel on the `PyTorch Slack server
<https://pytorch.slack.com/>`_, for which you can `request access
here <https://bit.ly/ptslack>`_.
:width: 30%
------------
|build| |coverage| |docs| |powered|
A scikit-learn compatible neural network library that wraps PyTorch.
.. |build| image:: https://api.travis-ci.org/skorch-dev/skorch.svg?branch=master
:alt: Build Status
:scale: 100%
:target: https://travis-ci.org/skorch-dev/skorch?branch=master
.. |coverage| image:: https://github.com/skorch-dev/skorch/blob/master/assets/coverage.svg
:alt: Test Coverage
:scale: 100%
.. |docs| image:: https://readthedocs.org/projects/skorch/badge/?version=latest
:alt: Documentation Status
:scale: 100%
:target: https://skorch.readthedocs.io/en/latest/?badge=latest
.. |powered| image:: https://github.com/skorch-dev/skorch/blob/master/assets/powered.svg
:alt: Powered by
:scale: 100%
:target: https://github.com/ottogroup/
=========
Resources
=========
- `Documentation <https://skorch.readthedocs.io/en/latest/?badge=latest>`_
- `Source Code <https://github.com/skorch-dev/skorch/>`_
========
Examples
========
To see more elaborate examples, look `here
<https://github.com/skorch-dev/skorch/tree/master/notebooks/README.md>`__.
.. code:: python
import numpy as np
from sklearn.datasets import make_classification
from torch import nn
import torch.nn.functional as F
from skorch import NeuralNetClassifier
X, y = make_classification(1000, 20, n_informative=10, random_state=0)
X = X.astype(np.float32)
y = y.astype(np.int64)
class MyModule(nn.Module):
def __init__(self, num_units=10, nonlin=F.relu):
super(MyModule, self).__init__()
self.dense0 = nn.Linear(20, num_units)
self.nonlin = nonlin
self.dropout = nn.Dropout(0.5)
self.dense1 = nn.Linear(num_units, 10)
self.output = nn.Linear(10, 2)
def forward(self, X, **kwargs):
X = self.nonlin(self.dense0(X))
X = self.dropout(X)
X = F.relu(self.dense1(X))
X = F.softmax(self.output(X), dim=-1)
return X
net = NeuralNetClassifier(
MyModule,
max_epochs=10,
lr=0.1,
# Shuffle training data on each epoch
iterator_train__shuffle=True,
)
net.fit(X, y)
y_proba = net.predict_proba(X)
In an sklearn Pipeline:
.. code:: python
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
pipe = Pipeline([
('scale', StandardScaler()),
('net', net),
])
pipe.fit(X, y)
y_proba = pipe.predict_proba(X)
With grid search
.. code:: python
from sklearn.model_selection import GridSearchCV
params = {
'lr': [0.01, 0.02],
'max_epochs': [10, 20],
'module__num_units': [10, 20],
}
gs = GridSearchCV(net, params, refit=False, cv=3, scoring='accuracy')
gs.fit(X, y)
print(gs.best_score_, gs.best_params_)
skorch also provides many convenient features, among others:
- `Learning rate schedulers <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.LRScheduler>`_ (Warm restarts, cyclic LR and many more)
- `Scoring using sklearn (and custom) scoring functions <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.EpochScoring>`_
- `Early stopping <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.EarlyStopping>`_
- `Checkpointing <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.Checkpoint>`_
- `Parameter freezing/unfreezing <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.Freezer>`_
- `Progress bar <https://skorch.readthedocs.io/en/stable/callbacks.html#skorch.callbacks.ProgressBar>`_ (for CLI as well as jupyter)
- `Automatic inference of CLI parameters <https://github.com/skorch-dev/skorch/tree/master/examples/cli>`_
============
Installation
============
skorch requires Python 3.5 or higher.
pip installation
================
To install with pip, run:
.. code:: bash
pip install -U skorch
We recommend to use a virtual environment for this.
From source
===========
If you would like to use the must recent additions to skorch or
help development, you should install skorch from source:
.. code:: bash
git clone https://github.com/skorch-dev/skorch.git
cd skorch
# install pytorch version for your system (see below)
python setup.py install
Using conda
===========
You need a working conda installation. Get the correct miniconda for
your system from `here <https://conda.io/miniconda.html>`__.
You can also install skorch through the conda-forge channel.
The instructions for doing so are
available `here <https://github.com/conda-forge/skorch-feedstock>`__.
**Note**: The conda channel is _not_ managed by the skorch maintainers.
If you do not want to use conda-forge, you may install skorch using:
.. code:: bash
git clone https://github.com/skorch-dev/skorch.git
cd skorch
conda env create
source activate skorch
# install pytorch version for your system (see below)
python setup.py install
If you want to help developing, run:
.. code:: bash
git clone https://github.com/skorch-dev/skorch.git
cd skorch
conda env create
source activate skorch
# install pytorch version for your system (see below)
conda install -c conda-forge --file requirements-dev.txt
python setup.py develop
py.test # unit tests
pylint skorch # static code checks
Using pip
=========
If you just want to use skorch, use:
.. code:: bash
git clone https://github.com/skorch-dev/skorch.git
cd skorch
# create and activate a virtual environment
pip install -r requirements.txt
# install pytorch version for your system (see below)
python setup.py install
If you want to help developing, run:
.. code:: bash
git clone https://github.com/skorch-dev/skorch.git
cd skorch
# create and activate a virtual environment
pip install -r requirements.txt
# install pytorch version for your system (see below)
pip install -r requirements-dev.txt
python setup.py develop
py.test # unit tests
pylint skorch # static code checks
PyTorch
=======
PyTorch is not covered by the dependencies, since the PyTorch version
you need is dependent on your system. For installation instructions
for PyTorch, visit the `PyTorch website
<http://pytorch.org/>`__. skorch officially supports the following
PyTorch versions:
- 1.1.0
- 1.2.0
- 1.3.1
- 1.4.0
In general, this should work (assuming CUDA 9):
.. code:: bash
# using conda:
conda install pytorch cudatoolkit=9.0 -c pytorch
# using pip
pip install torch
=============
Communication
=============
- `GitHub issues <https://github.com/skorch-dev/skorch/issues>`_: bug
reports, feature requests, install issues, RFCs, thoughts, etc.
- Slack: We run the #skorch channel on the `PyTorch Slack server
<https://pytorch.slack.com/>`_, for which you can `request access
here <https://bit.ly/ptslack>`_.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
skorch-0.8.0.tar.gz
(101.8 kB
view details)
Built Distribution
skorch-0.8.0-py3-none-any.whl
(113.7 kB
view details)
File details
Details for the file skorch-0.8.0.tar.gz
.
File metadata
- Download URL: skorch-0.8.0.tar.gz
- Upload date:
- Size: 101.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5908fdc3c1c8ae49d16fa3edb1fbdd412c44f2baee02abdd5432b7a47933a7d0 |
|
MD5 | cdc782dbea3c2b8a88fe7e7770cc26ba |
|
BLAKE2b-256 | ff5c8c39bdff43f2b2ed452a1d7e5e3a92ba0452a76db57a388097cd715e6846 |
File details
Details for the file skorch-0.8.0-py3-none-any.whl
.
File metadata
- Download URL: skorch-0.8.0-py3-none-any.whl
- Upload date:
- Size: 113.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f292e9866f65df7fb7cf209f503924e2cb67377d7524a50c3e5dc6ae5a5ecd47 |
|
MD5 | d53522dfc1d81abc9dbe3b72be4ff861 |
|
BLAKE2b-256 | 42214936b881b33de285faa0b36209afe4f9724a0875b2225abdc63b23d384a3 |