Sparsity-Constraint OPtimization via itErative-algorithm
Project description
skscope
: Fast Sparse-Constraint Optimization
What is skscope
?
skscope
aims to make sparsity-constrained optimization (SCO) accessible to everyone because SCO holds immense potential across various domains, including machine learning, statistics, and signal processing. By providing a user-friendly interface, skscope
empowers individuals from diverse backgrounds to harness the power of SCO and unlock its broad range of applications (see examples exhibited below).
Installation
The recommended option for most users:
pip install skscope
For Linux or Mac users, an alternative is
conda install skscope
If you want to work with the latest development version, the further installation instructions help you install from source.
Quick examples
Here's a quick example showcasing how you can use three simple steps to perform feature selection via the skscope
:
from skscope import ScopeSolver
from sklearn.datasets import make_regression
import jax.numpy as jnp
## generate data
x, y, coef = make_regression(n_features=10, n_informative=3, coef=True)
## 1. define loss function
def ols_loss(para):
return jnp.sum(jnp.square(y - x @ para))
## 2. initialize the solver where 10 parameters in total and three of which are sparse
solver = ScopeSolver(10, 3)
## 3. use the solver to optimized the objective
params = solver.solve(ols_loss)
Below's another example illustrates that you can modify the objective function to address another totally different problem.
import numpy as np
import jax.numpy as jnp
import matplotlib.pyplot as plt
from skscope import ScopeSolver
## generate data
np.random.seed(2023)
x = np.cumsum(np.random.randn(500)) # random walk with normal increment
## 1. define loss function
def tf_objective(params):
return jnp.sum(jnp.square(x - jnp.cumsum(params)))
## 2. initialize the solver where 10 parameters in total and three of which are sparse
solver = ScopeSolver(len(x), 10)
## 3. use the solver to optimized the objective
params = solver.solve(tf_objective)
tf_x = jnp.cumsum(params)
plt.plot(x, label='observation', linewidth=0.8)
plt.plot(tf_x, label='filtering trend')
plt.legend(); plt.show()
The above Figure shows that the solution of ScopeSolver
now captures the main trend of the observed random work. Again, 4 lines of code help us attain the solution.
Example gallery
Since skscope
can easily be applied to diverse objective functions, we can definitely leverage it to develop various machine learning methods that is driven by SCO. In our example gallery, we supply 25 comprehensive statistical/machine learning examples to illustrate the versatility of skscope
.
Why skscope
is versatile?
The high versatility of skscope
in effectively addressing SCO problems are derived from two key factors: theoretical concepts and computational implementation. In terms of theoretical concepts, there have been remarkable advancements in SCO in recent years, offering a range of efficient iterative methods for solving SCO. Some of these algorithms exhibit elegance by only relying on the current parameters and gradients for the iteration process. On the other hand, significant progress has been made in automatic differentiation, a fundamental component of deep learning algorithms that plays a vital role in computing gradients. By ingeniously combining these two important advancements, skscope
emerges as the pioneering tool capable of handling diverse sparse optimization tasks.
With skscope
, the creation of new machine learning methods becomes effortless, leading to the advancement of the "sparsity idea" in machine learning. This, in turn, facilitates the availability of a broader spectrum of machine learning algorithms for tackling real-world problems.
Software features
-
Support multiple state-of-the-art SCO solvers. Now,
skscope
has supported these algorithms: SCOPE, HTP, Grasp, IHT, OMP, and FoBa. -
User-friendly API
-
zero-knowledge of SCO solvers: the state-of-the-art solvers in
skscope
has intuitive and highly unified APIs. -
extensive documentation:
skscope
is fully documented and accompanied by example gallery and reproduction scripts.
-
-
Solving SCO and its generalization:
-
SCO: $\arg\min\limits_{\theta \in R^p} f(\theta) \text{ s.t. } ||\theta||_0 \leq s$;
-
SCO for group-structure parameters: $\arg\min\limits_{\theta \in R^p} f(\theta) \text{ s.t. } I(||\theta_{G_i}||2 \neq 0) \leq s$ where ${G_i}{i=1}^q$ is a non-overlapping partition for ${1, \ldots, p}$;
-
SCO when pre-selecting parameters in set $\mathcal{P}$: $\arg\min\limits_{\theta \in R^p} f(\theta) \text{ s.t. } ||\theta_{\mathcal{P}^c}||_0 \leq s$.
-
-
Data science toolkit
-
Information criterion and cross-validation for selecting $s$
-
Portable interface for developing new machine-learning methods
-
-
Just-in-time-compilation compatibility
Benchmark
- Support recovery accuracy
Methods | Linear regression | Logistic regression | Trend filtering | Multi-task learning | Ising model | Nonlinear feature selection |
---|---|---|---|---|---|---|
OMPSolver |
1.00(0.01) | 0.91(0.05) | 0.70(0.18) | 1.00(0.00) | 0.98(0.03) | 0.77(0.09) |
IHTSolver |
0.79(0.04) | 0.97(0.03) | 0.08(0.10) | 0.97(0.02) | 0.96(0.05) | 0.78(0.09) |
HTPSolver |
1.00(0.00) | 0.84(0.05) | 0.41(0.22) | 1.00(0.00) | 0.97(0.03) | 0.78(0.09) |
GraspSolver |
1.00(0.00) | 0.90(0.08) | 0.58(0.23) | 1.00(0.00) | 0.99(0.01) | 0.78(0.08) |
FoBaSolver |
1.00(0.00) | 0.92(0.06) | 0.87(0.13) | 1.00(0.00) | 1.00(0.01) | 0.77(0.09) |
ScopeSolver |
1.00(0.00) | 0.94(0.04) | 0.79(0.19) | 1.00(0.00) | 1.00(0.01) | 0.77(0.09) |
cvxpy |
0.83(0.17) | 0.83(0.05) | 0.19(0.22) | 1.00(0.00) | 0.94(0.04) | 0.74(0.09) |
All solvers (except IHTSolver
) in skscope
consistently outperformed cvxpy
in terms of accuracy for the selection of the support set.
- Runtime (measured in seconds):
Methods | Linear regression | Logistic regression | Trend filtering | Multi-task learning | Ising model | Nonlinear feature selection |
---|---|---|---|---|---|---|
OMPSolver |
0.62(0.11) | 0.80(0.11) | 0.03(0.00) | 2.70(0.26) | 1.39(0.13) | 13.24(3.91) |
IHTSolver |
0.23(0.05) | 0.18(0.12) | 0.30(0.06) | 0.80(0.11) | 0.98(0.08) | 1.67(0.50) |
HTPSolver |
0.50(0.14) | 0.94(0.44) | 0.03(0.01) | 14.18(5.13) | 3.41(1.22) | 12.97(6.23) |
GraspSolver |
0.18(0.06) | 2.55(0.86) | 0.08(0.03) | 0.54(0.28) | 0.53(0.22) | 3.06(0.75) |
FoBaSolver |
3.71(0.50) | 3.28(0.39) | 0.13(0.02) | 6.22(0.61) | 11.10(1.04) | 57.42(12.95) |
ScopeSolver |
0.30(0.08) | 1.20(2.14) | 0.09(0.01) | 1.14(0.89) | 1.17(0.25) | 7.78(2.23) |
cvxpy |
14.59(5.60) | 69.45(53.47) | 0.47(0.16) | 39.36(155.70) | 32.26(17.88) | 534.49(337.72) |
skscope
demonstrated significant computational advantages over cvxpy
, exhibiting speedups ranging from approximately 3-500 times.
Software architecture
Contributions
Any kind of contribution to skscope
would be highly appreciated! Please check the contributor's guide.
- Bug report via github issues
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file skscope-0.1.8.tar.gz
.
File metadata
- Download URL: skscope-0.1.8.tar.gz
- Upload date:
- Size: 2.8 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1856c7efb38c7042796a9d16c6fc806b5b1ca6132375fbded30d1226541299d6 |
|
MD5 | f6dee47ae5117c979e2fbb8adedf3d13 |
|
BLAKE2b-256 | 469888f640449d1930e5cb5edb391a47046bd85eef998f483d4d3ced6aaf22bb |
File details
Details for the file skscope-0.1.8-cp312-cp312-win_amd64.whl
.
File metadata
- Download URL: skscope-0.1.8-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 279.1 kB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1c126f873e142996aefda9b736dfdbc9a02f815cce188fdd75090bf80a93a81b |
|
MD5 | de5fd037ff29842beade8ab309132526 |
|
BLAKE2b-256 | a5049e14c800909dea3e85d00959955e00f0015bf7698b314d59930b58f01d52 |
File details
Details for the file skscope-0.1.8-cp312-cp312-win32.whl
.
File metadata
- Download URL: skscope-0.1.8-cp312-cp312-win32.whl
- Upload date:
- Size: 254.7 kB
- Tags: CPython 3.12, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1f90b98a7c703af93e7f01a6fc5c76be0c96e0696f45f07c492c489bfa5a6ba8 |
|
MD5 | f2e2f81f17df36e6e2f6faaab4c6de57 |
|
BLAKE2b-256 | 2f46c8b8f10d38be47c5914a30deb32dadbc4d717a2a954814e9cce72cad30de |
File details
Details for the file skscope-0.1.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: skscope-0.1.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 335.6 kB
- Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e6ad179f6673bccb192f8ca0cd19e2f243a7b828aaa71c9f7002b984617eb477 |
|
MD5 | 17056af1c3b7fa29482c0494ef5ffe80 |
|
BLAKE2b-256 | f3e8d75e4721cb4b41a3f231ee2130346cac0ec7a23743a884bbb40f31b44130 |
File details
Details for the file skscope-0.1.8-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: skscope-0.1.8-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 347.7 kB
- Tags: CPython 3.12, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e0df59c2dc92013a98932654d21193795cf2c60a966d96faecee32e35b7622bf |
|
MD5 | ef29369af693b624e1f9ef29b5e9ff8c |
|
BLAKE2b-256 | 00ee045744286b591219b5a374bda9c228b0580cf9433a48e6cedc4d736b8a87 |
File details
Details for the file skscope-0.1.8-cp312-cp312-macosx_11_0_arm64.whl
.
File metadata
- Download URL: skscope-0.1.8-cp312-cp312-macosx_11_0_arm64.whl
- Upload date:
- Size: 244.7 kB
- Tags: CPython 3.12, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 262b96156adfeedfba130a30b44fe3c778cf0a21394d3876a46df660d66a2cec |
|
MD5 | 597cbed4cdfbf878edcc84d03321d62a |
|
BLAKE2b-256 | 95ca4fedf0dbfd8cd665e9ccf9a606003649150af3b239b48d7da072b0029d07 |
File details
Details for the file skscope-0.1.8-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: skscope-0.1.8-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 278.5 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1b002fe01f3705f7d5812ec9870971c9764c295141f1f1e1b3270d88b7202981 |
|
MD5 | 18309c3700cfc80979d7a208823f418f |
|
BLAKE2b-256 | 99713d0ac884111fbdd7ca99eafa501277877ff666ce15186e7e6c3503d43c85 |
File details
Details for the file skscope-0.1.8-cp311-cp311-win32.whl
.
File metadata
- Download URL: skscope-0.1.8-cp311-cp311-win32.whl
- Upload date:
- Size: 254.8 kB
- Tags: CPython 3.11, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 930835ef0987858b27493a5dbd4a666a6a6f5b2957c54afb75fac7932fe1d37f |
|
MD5 | 278a9ac58a62bbd4e4550e39d695d01f |
|
BLAKE2b-256 | 13a137167e152931d2da5d9a01103628018818b65baa93e1bbe0f3402b17903d |
File details
Details for the file skscope-0.1.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: skscope-0.1.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 335.4 kB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 678a74bcfb7e37eaf32c65f7210e352d1275003a423f711f6cb02db8c3f0dd2e |
|
MD5 | e9b1a7a5a869cb6ba609f90a49390138 |
|
BLAKE2b-256 | 07f520a592fcca56994fc5aa79d24247f4469811b359a3668afa7f0fa989134f |
File details
Details for the file skscope-0.1.8-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: skscope-0.1.8-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 347.7 kB
- Tags: CPython 3.11, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c08de7678abbcc53a339d05372622e3ebf6570673abdab855578683f2e8f2ffa |
|
MD5 | f176e7bfbc3d8eab75bee1078c76037b |
|
BLAKE2b-256 | 772e2ae41a6f77db2a1204fa4031a6c5a2aea93dfa692afafd609ffb07500903 |
File details
Details for the file skscope-0.1.8-cp311-cp311-macosx_11_0_arm64.whl
.
File metadata
- Download URL: skscope-0.1.8-cp311-cp311-macosx_11_0_arm64.whl
- Upload date:
- Size: 239.0 kB
- Tags: CPython 3.11, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6fa35e44ad673e9373612642937e93178db20cb781b00124e6350a54bf757595 |
|
MD5 | 775e7529dc045147a92df477ba6bfa3e |
|
BLAKE2b-256 | a4ea9cc37815dfc6f3484ffc2d09db98e5d1d04f916504d3448cfd766eaa51a4 |
File details
Details for the file skscope-0.1.8-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: skscope-0.1.8-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 278.0 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 601809c982fe4084013f6e8c942d7610850274d5cc9e184d5e0901597e2acded |
|
MD5 | 47d8f327e68dc4f4f6709e03a2088feb |
|
BLAKE2b-256 | a2c2b286e300145f064b49ca591996c1d6dbc315b629cffc4b2479b84bf0c5f0 |
File details
Details for the file skscope-0.1.8-cp310-cp310-win32.whl
.
File metadata
- Download URL: skscope-0.1.8-cp310-cp310-win32.whl
- Upload date:
- Size: 253.8 kB
- Tags: CPython 3.10, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 10d65e4750b3c8898f45c50d849c5168ff393312679798901710f3ea661085ba |
|
MD5 | 7f668fa13bf329730d5cc2cdbbbe75d8 |
|
BLAKE2b-256 | e5624103e146c35f8e3421977f08f1316557c8eddfb17e822caa2d93409f11e9 |
File details
Details for the file skscope-0.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: skscope-0.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 334.8 kB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 66becc5d846f8ecfe7b03b4c69eac1a75ee467a8dc673830f3133582fb3cfa88 |
|
MD5 | aed7d0125cab847b6212fa4576b06a4e |
|
BLAKE2b-256 | 1cfc6500b1f80dc5508231aaad18a955502b7a3de448c31516e1cc92b3bb2c07 |
File details
Details for the file skscope-0.1.8-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: skscope-0.1.8-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 347.0 kB
- Tags: CPython 3.10, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 046f393c66c0244db16c6e9fbc78daca02ab4ec80776e1b1a3fb16b9c035f5f6 |
|
MD5 | cb969c873a96f1724804ba03227a836c |
|
BLAKE2b-256 | 87d7182fab96010abf79182348b83a71ee52b5cbec6fe107715bc44e32f208fa |
File details
Details for the file skscope-0.1.8-cp310-cp310-macosx_11_0_arm64.whl
.
File metadata
- Download URL: skscope-0.1.8-cp310-cp310-macosx_11_0_arm64.whl
- Upload date:
- Size: 238.2 kB
- Tags: CPython 3.10, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7606b83042e92408285252f623014cec8e395f6a214fd105c532dadb30fa6c93 |
|
MD5 | 31586a9ced06eb0481172ed2e8e39474 |
|
BLAKE2b-256 | 0a8ce865ddfba62a9569da6fc7dc9e5bb3eed835ed0810a90ad25f17e29f68ef |
File details
Details for the file skscope-0.1.8-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: skscope-0.1.8-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 277.8 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3498afdea52cd07a28e1020f6329fbb553d31ec92023d858ed8e545b8a66dcd9 |
|
MD5 | d8fb525a0c9ab511633754985f8a925d |
|
BLAKE2b-256 | 1d62b0c71609a1969f8c1332d37bb7f696a790d9ceba9225deb5fc4972fbd97b |
File details
Details for the file skscope-0.1.8-cp39-cp39-win32.whl
.
File metadata
- Download URL: skscope-0.1.8-cp39-cp39-win32.whl
- Upload date:
- Size: 254.1 kB
- Tags: CPython 3.9, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cc7b5e3188a3f1849b478ff5783f39aef594db29b6a453678e09f0b1f1bb8ed0 |
|
MD5 | 9610a99aef845ef1f05c4b30a867d500 |
|
BLAKE2b-256 | 2243aa70c551170983d92c46b59abdb99a803776c00dc2d8776fe77a0c1a8f31 |
File details
Details for the file skscope-0.1.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: skscope-0.1.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 334.9 kB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f3d2a1f0015ae8a090f073c55ccebf5df8591984b414d9d22f6b9f8babb6fa46 |
|
MD5 | d31da23ae97fa36213b1148235d48ced |
|
BLAKE2b-256 | 3be2366bd132996042912c40f271cbd1db038b1fe95d5b3d92946c20a1210d00 |
File details
Details for the file skscope-0.1.8-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: skscope-0.1.8-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 347.1 kB
- Tags: CPython 3.9, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2075831f4879e2c618487c58ebbca082c58fa6acefcc096e8ccde9eacafd4dbc |
|
MD5 | 0eb4a03999599bb63529689834835b9e |
|
BLAKE2b-256 | de085c7c50773fc8648fe52f384d0ac72f6ef36c132c600111af54bff143b6b0 |
File details
Details for the file skscope-0.1.8-cp39-cp39-macosx_11_0_arm64.whl
.
File metadata
- Download URL: skscope-0.1.8-cp39-cp39-macosx_11_0_arm64.whl
- Upload date:
- Size: 238.4 kB
- Tags: CPython 3.9, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8675016257e23b11f9f1cf5094a007528c57539af54397a602ff888a7bc2ee9d |
|
MD5 | ad617839ce4bba1bd9d4ba65d720823e |
|
BLAKE2b-256 | 9a651b50db010e870893756084d8438dc635159119900017fcc049b2679648e4 |
File details
Details for the file skscope-0.1.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: skscope-0.1.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 334.7 kB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f202972036221d55911a99d7166b6d7d813ee3fcc8dc647ea1a934b57e5c9391 |
|
MD5 | c37597b89cf6b7967249b117ad061c1c |
|
BLAKE2b-256 | 756b729720c0de600deadc5fd4f4e7290a62e71139931ca7f0e6de1a96c079a8 |
File details
Details for the file skscope-0.1.8-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: skscope-0.1.8-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 346.9 kB
- Tags: CPython 3.8, manylinux: glibc 2.17+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 08c6ab722c58a1928695fb7d33fdcc478494e4fdfb7351d4ceabbbf2b083a049 |
|
MD5 | dbffc2ec6099ae193c27e97f499635a3 |
|
BLAKE2b-256 | d9ceecd816800c837ba5f6e7fffc4215e2db6b1f39dc51e857e1d4aa5f68ffc5 |
File details
Details for the file skscope-0.1.8-cp38-cp38-macosx_11_0_arm64.whl
.
File metadata
- Download URL: skscope-0.1.8-cp38-cp38-macosx_11_0_arm64.whl
- Upload date:
- Size: 238.2 kB
- Tags: CPython 3.8, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c0fdbdbbfd20c6eed8569129934116304ed9068d348e31d4a4c0b63b472b6b88 |
|
MD5 | 8657600207a2e9648bcfd79b544ef058 |
|
BLAKE2b-256 | 79b34a71f5b8ad00efe1588f05fe180f3a3b67f43668a535ba38886b9219f56a |