MLS SDK
Project description
mls-model-registry (sktmls)
Contents
Description
A Python package for MLS model registry.
This python package includes
- Customized prediction pipelines inheriting MLSModel
- Model uploader to AWS S3 for meta management and online prediction
Installation
Installation is automatically done by training containers in YE. If you want to install manually for local machines,
# develop
pip install --index-url https://test.pypi.org/simple/ --no-deps sktmls
# production
pip install sktmls
How to use
- MLS Docs: https://ab.sktmls.com/docs/model-registry
- sktmls Docs: https://sktaiflow.github.io/mls-sdk/sktmls
Development
Requirements for development
- Python 3.6
- requirements.txt
- requirements-dev.txt
Local model registry
To enable all model related features in local environment, you need to create a directory models
in your home directory.
$ cd ~/
$ mkdir models
Python environment
First you need to do the followings
$ python -V # Check if the version is 3.6.
$ python -m venv env # Create a virtualenv.
$ . env/bin/activate # Activate the env.
$ pip install --upgrade pip
$ pip install --upgrade setuptools
$ pip install --upgrade wheel
$ pip install -r requirements.txt # Install required packages.
$ pip install -r requirements-dev.txt # Install required dev packages.
Documents generation
Before a commit, generate documents if any docstring has been changed
rm -rf docs
pdoc --html --config show_source_code=False -f -o ./docs sktmls
Version
sktmls
package version is automatically genereated followd by a production release on format YY.MM.DD
We use Calendar Versioning. For version available, see the tags on this repository.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sktmls-2022.12.1.tar.gz
(100.8 kB
view hashes)
Built Distribution
sktmls-2022.12.1-py3-none-any.whl
(148.9 kB
view hashes)
Close
Hashes for sktmls-2022.12.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a98eae53e694ad825d0fdece29eef439bc7425d58024897ab1db2d45a401ddb0 |
|
MD5 | 07e0223097c4aee5d31ea6b692fb30bd |
|
BLAKE2b-256 | 613eb65eaf4fbb2d9d03608f3eb1aeee8c0604cdc219e9d8e898476a030203d7 |