Skip to main content

Tools to extend sklearn

Project description

sktools

https://img.shields.io/pypi/v/sktools.svg https://github.com/david26694/sktools/workflows/Unit%20Tests/badge.svg Documentation Status https://static.pepy.tech/personalized-badge/sktools?period=total&units=international_system&left_color=black&right_color=brightgreen&left_text=Downloads

sktools provides tools to extend sklearn, like several feature engineering based transformers.

Installation

To install sktools, run this command in your terminal:

$ pip install sktools

Documentation

Can be found in https://sktools.readthedocs.io

Usage

from sktools import IsEmptyExtractor

from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline

...

mod = Pipeline([
    ("impute-features", IsEmptyExtractor()),
    ("model", LogisticRegression())
])

...

Features

Here’s a list of features that sktools currently offers:

  • sktools.encoders.NestedTargetEncoder performs target encoding suited for variables with nesting.

  • sktools.encoders.QuantileEncoder performs target aggregation using a quantile instead of the mean.

  • sktools.preprocessing.CyclicFeaturizer converts numeric to cyclical features via sine and cosine transformations.

  • sktools.impute.IsEmptyExtractor creates binary variables indicating if there are missing values.

  • sktools.matrix_denser.MatrixDenser transformer that converts sparse matrices to dense.

  • sktools.quantilegroups.GroupedQuantileTransformer creates quantiles of a feature by group.

  • sktools.quantilegroups.PercentileGroupFeaturizer creates features regarding how an instance compares with a quantile of its group.

  • sktools.quantilegroups.MeanGroupFeaturizer creates features regarding how an instance compares with the mean of its group.

  • sktools.selectors.TypeSelector gets variables matching a type.

  • sktools.selectors.ItemsSelector allows to manually choose some variables.

  • sktools.ensemble.MedianForestRegressor applies the median instead of the mean when aggregating trees predictions.

  • sktools.linear_model.QuantileRegression sklearn style wrapper for quantile regression.

  • sktools.model_selection.BootstrapFold bootstrap cross-validator.

  • sktools.GradientBoostingFeatureGenerator Automated feature generation through gradient boosting.

License

MIT license

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

History

0.1.4 (2021-03-20)

  • Gradient boosting feature regressor

0.1.3 (2020-07-13)

  • Bootstrap cross-validation

  • Cyclic featurizer

0.1.2 (2020-06-24)

  • L1 linear model and random forest

  • Quantile encoder refactor

0.1.1 (2020-06-10)

  • Refactor code, add group featurizers

0.1.0 (2020-04-19)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sktools-0.1.4.tar.gz (33.9 kB view details)

Uploaded Source

Built Distribution

sktools-0.1.4-py2.py3-none-any.whl (20.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file sktools-0.1.4.tar.gz.

File metadata

  • Download URL: sktools-0.1.4.tar.gz
  • Upload date:
  • Size: 33.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.0

File hashes

Hashes for sktools-0.1.4.tar.gz
Algorithm Hash digest
SHA256 913fc14659f3aa4d0ac079d2746edb025c462190bf1084b2d8ab31de80384f51
MD5 048f2de88fa7db49f10798e790521e2f
BLAKE2b-256 f833628a860d0c85d04e2490becd63875deb6d48994ffddc34c14aa611453451

See more details on using hashes here.

File details

Details for the file sktools-0.1.4-py2.py3-none-any.whl.

File metadata

  • Download URL: sktools-0.1.4-py2.py3-none-any.whl
  • Upload date:
  • Size: 20.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.0

File hashes

Hashes for sktools-0.1.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 2cd4966989fd164f8e2808a86a4ed7aaba38a883ba7141194800e5b799484882
MD5 25ebb3c50d8506bca1c5d1da4b0b7445
BLAKE2b-256 d2425d4a5c8a3543ab6ac51ff7f49d068a8e5a883d4dcbcd8f1027187de576a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page