Skip to main content

SciKit learn wrapper for XCS algorithm implementation.

Project description

skxcs

skxcs is a SciKit learn wrapper for implementation of XCS algorithm xcs.

Installation

Use the package manager pip to install skxcs. You need to have Cython installed.

pip install skxcs

Usage

Numeric Values

from skxcs.classifiers import XcsClassifier
import pandas as pd
from sklearn.model_selection import train_test_split

# Numeric values
numerical_frame = pd.read_csv('https://raw.githubusercontent.com/kliegr/arcBench/master/data/datasets/iris.csv')
numerical_frame.dropna(inplace=True)
y = numerical_frame['class']
numerical_frame.drop('class', axis=1, inplace=True)
X_train, X_test, y_train, y_test = train_test_split(numerical_frame, y, test_size=0.33)

classifier = XcsClassifier()

# If data input is non binary, classifier automatically uses MLDP discretizer for numeric values
# and one hot encoding for categorical values to transform data in both fit and predict methods.

classifier.fit(X_train, y_train)

# Get prediction array
y_pred = classifier.predict(X_test)

# Get pretty rules
for rule in classifier.get_pretty_rules():
    print(rule)

# To use get_pretty_rules or pretty_print_prediction methods,
# classifier has to transform train and test data first.

Categorical values

import pandas as pd
from skxcs.classifiers import XcsClassifier
from sklearn.model_selection import train_test_split

# Categorical values
categorical_frame = pd.read_csv('https://raw.githubusercontent.com/kliegr/arcBench/master/data/datasets/autos.csv')
categorical_frame.dropna(inplace=True)
y = categorical_frame['XClass']
categorical_frame = categorical_frame.select_dtypes(include=[object])
categorical_frame.drop('XClass', axis=1, inplace=True)
X_train, X_test, y_train, y_test = train_test_split(categorical_frame, y, test_size=0.25)
classifier = XcsClassifier()

# You can transform data yourself. You should either transform both training
# and testing data, or none of them. It is necessary to ensure correct values are passed to classifier.
X_train_bin = classifier.transform_df(X_train, y=y_train)
classifier.fit(X_train_bin, y_train)

# Note that we don't pass 'y' to transform method when we transform test data
X_test_bin = classifier.transform_df(X_test)

# pretty print prediction
result = classifier.pretty_print_prediction(X_test_bin)
print(result)

Contributing

...

License

MIT

Project details


Release history Release notifications | RSS feed

This version

1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skxcs-1.0.tar.gz (8.3 kB view details)

Uploaded Source

File details

Details for the file skxcs-1.0.tar.gz.

File metadata

  • Download URL: skxcs-1.0.tar.gz
  • Upload date:
  • Size: 8.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for skxcs-1.0.tar.gz
Algorithm Hash digest
SHA256 ad2d3755cf668e714395f62c28dea3e3ebd6c1c1c42596120fb8b1428fb62d3c
MD5 1756fbdbb562c73f1308a78b9cfec286
BLAKE2b-256 8dff1872abd7c9448d785cfbc401cc520972b46d02bf24187c74fff3e843f9be

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page