Skip to main content

SkyPilot: An intercloud broker for the clouds

Project description

SkyPilot

Documentation GitHub Release Join Slack

Run LLMs and AI on Any Cloud


:fire: News :fire:


SkyPilot is a framework for running LLMs, AI, and batch jobs on any cloud, offering maximum cost savings, highest GPU availability, and managed execution.

SkyPilot abstracts away cloud infra burdens:

  • Launch jobs & clusters on any cloud
  • Easy scale-out: queue and run many jobs, automatically managed
  • Easy access to object stores (S3, GCS, R2)

SkyPilot maximizes GPU availability for your jobs:

  • Provision in all zones/regions/clouds you have access to (the Sky), with automatic failover

SkyPilot cuts your cloud costs:

  • Managed Spot: 3-6x cost savings using spot VMs, with auto-recovery from preemptions
  • Optimizer: 2x cost savings by auto-picking the cheapest VM/zone/region/cloud
  • Autostop: hands-free cleanup of idle clusters

SkyPilot supports your existing GPU, TPU, and CPU workloads, with no code changes.

Install with pip or from source:

pip install "skypilot[aws,gcp,azure,ibm,oci,scp,lambda]"  # choose your clouds

Current supported providers (AWS, Azure, GCP, Lambda Cloud, IBM, Samsung, OCI, Cloudflare):

SkyPilot

Getting Started

You can find our documentation here.

SkyPilot in 1 Minute

A SkyPilot task specifies: resource requirements, data to be synced, setup commands, and the task commands.

Once written in this unified interface (YAML or Python API), the task can be launched on any available cloud. This avoids vendor lock-in, and allows easily moving jobs to a different provider.

Paste the following into a file my_task.yaml:

resources:
  accelerators: V100:1  # 1x NVIDIA V100 GPU

num_nodes: 1  # Number of VMs to launch

# Working directory (optional) containing the project codebase.
# Its contents are synced to ~/sky_workdir/ on the cluster.
workdir: ~/torch_examples

# Commands to be run before executing the job.
# Typical use: pip install -r requirements.txt, git clone, etc.
setup: |
  pip install torch torchvision

# Commands to run as a job.
# Typical use: launch the main program.
run: |
  cd mnist
  python main.py --epochs 1

Prepare the workdir by cloning:

git clone https://github.com/pytorch/examples.git ~/torch_examples

Launch with sky launch (note: access to GPU instances is needed for this example):

sky launch my_task.yaml

SkyPilot then performs the heavy-lifting for you, including:

  1. Find the lowest priced VM instance type across different clouds
  2. Provision the VM, with auto-failover if the cloud returned capacity errors
  3. Sync the local workdir to the VM
  4. Run the task's setup commands to prepare the VM for running the task
  5. Run the task's run commands

SkyPilot Demo

Refer to Quickstart to get started with SkyPilot.

More Information

To learn more, see our Documentation and Tutorials.

Runnable examples:

Follow updates:

Read the research:

Support and Questions

We are excited to hear your feedback!

For general discussions, join us on the SkyPilot Slack.

Contributing

We welcome and value all contributions to the project! Please refer to CONTRIBUTING for how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skypilot-nightly-1.0.0.dev20230722.tar.gz (557.8 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file skypilot-nightly-1.0.0.dev20230722.tar.gz.

File metadata

File hashes

Hashes for skypilot-nightly-1.0.0.dev20230722.tar.gz
Algorithm Hash digest
SHA256 27812dc5a4105e8f62717b2e0f9a3c652c5927ff64826706bcae63440d3bff6b
MD5 920ff661ad070a802a0af362f27595c4
BLAKE2b-256 0543051948f388efd9002507bd36e34378c17c24086e28fc64a9747d5c68c852

See more details on using hashes here.

File details

Details for the file skypilot_nightly-1.0.0.dev20230722-py3-none-any.whl.

File metadata

File hashes

Hashes for skypilot_nightly-1.0.0.dev20230722-py3-none-any.whl
Algorithm Hash digest
SHA256 2a0b876372251ad8f7e2c98c5e5c19e3d7ae7189ab76a7c377c6adc2c5deb1f8
MD5 f6ba57c32f30d4e22bf595c6e3297ab5
BLAKE2b-256 4d8ee00241b18c7d610b91c5d75d21df17e900dfd2b18915c3885bfa9cb5e376

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page