Skip to main content

SkyPilot: An intercloud broker for the clouds

Project description

SkyPilot

Documentation GitHub Release Join Slack

Run AI on Any Infra — Unified, Faster, Cheaper


:fire: News :fire:

  • [Sep, 2024] Point, Launch and Serve Llama 3.2 on Kubernetes or Any Cloud: example
  • [Sep, 2024] Run and deploy Pixtral, the first open-source multimodal model from Mistral AI.
  • [Jul, 2024] Finetune and serve Llama 3.1 on your infra
  • [Jun, 2024] Reproduce GPT with llm.c on any cloud: guide
  • [Apr, 2024] Serve Qwen-110B on your infra: example
  • [Apr, 2024] Using Ollama to deploy quantized LLMs on CPUs and GPUs: example
  • [Feb, 2024] Deploying and scaling Gemma with SkyServe: example
  • [Feb, 2024] Serving Code Llama 70B with vLLM and SkyServe: example
  • [Dec, 2023] Mixtral 8x7B, a high quality sparse mixture-of-experts model, was released by Mistral AI! Deploy via SkyPilot on any cloud: example
  • [Nov, 2023] Using Axolotl to finetune Mistral 7B on the cloud (on-demand and spot): example
Archived
  • [Apr, 2024] Serve and finetune Llama 3 on any cloud or Kubernetes: example
  • [Mar, 2024] Serve and deploy Databricks DBRX on your infra: example
  • [Feb, 2024] Speed up your LLM deployments with SGLang for 5x throughput on SkyServe: example
  • [Dec, 2023] Using LoRAX to serve 1000s of finetuned LLMs on a single instance in the cloud: example
  • [Sep, 2023] Mistral 7B, a high-quality open LLM, was released! Deploy via SkyPilot on any cloud: Mistral docs
  • [Sep, 2023] Case study: Covariant transformed AI development on the cloud using SkyPilot, delivering models 4x faster cost-effectively: read the case study
  • [Aug, 2023] Finetuning Cookbook: Finetuning Llama 2 in your own cloud environment, privately: example, blog post
  • [July, 2023] Self-Hosted Llama-2 Chatbot on Any Cloud: example
  • [June, 2023] Serving LLM 24x Faster On the Cloud with vLLM and SkyPilot: example, blog post
  • [April, 2023] SkyPilot YAMLs for finetuning & serving the Vicuna LLM with a single command!

SkyPilot is a framework for running AI and batch workloads on any infra, offering unified execution, high cost savings, and high GPU availability.

SkyPilot abstracts away infra burdens:

SkyPilot supports multiple clusters, clouds, and hardware (the Sky):

  • Bring your reserved GPUs, Kubernetes clusters, or 12+ clouds
  • Flexible provisioning of GPUs, TPUs, CPUs, with auto-retry

SkyPilot cuts your cloud costs & maximizes GPU availability:

  • Autostop: automatic cleanup of idle resources
  • Managed Spot: 3-6x cost savings using spot instances, with preemption auto-recovery
  • Optimizer: 2x cost savings by auto-picking the cheapest & most available infra

SkyPilot supports your existing GPU, TPU, and CPU workloads, with no code changes.

Install with pip:

# Choose your clouds:
pip install -U "skypilot[kubernetes,aws,gcp,azure,oci,lambda,runpod,fluidstack,paperspace,cudo,ibm,scp]"

To get the latest features and fixes, use the nightly build or install from source:

# Choose your clouds:
pip install "skypilot-nightly[kubernetes,aws,gcp,azure,oci,lambda,runpod,fluidstack,paperspace,cudo,ibm,scp]"

Current supported infra (Kubernetes; AWS, GCP, Azure, OCI, Lambda Cloud, Fluidstack, RunPod, Cudo, Paperspace, Cloudflare, Samsung, IBM, VMware vSphere):

SkyPilot

Getting Started

You can find our documentation here.

SkyPilot in 1 Minute

A SkyPilot task specifies: resource requirements, data to be synced, setup commands, and the task commands.

Once written in this unified interface (YAML or Python API), the task can be launched on any available cloud. This avoids vendor lock-in, and allows easily moving jobs to a different provider.

Paste the following into a file my_task.yaml:

resources:
  accelerators: V100:1  # 1x NVIDIA V100 GPU

num_nodes: 1  # Number of VMs to launch

# Working directory (optional) containing the project codebase.
# Its contents are synced to ~/sky_workdir/ on the cluster.
workdir: ~/torch_examples

# Commands to be run before executing the job.
# Typical use: pip install -r requirements.txt, git clone, etc.
setup: |
  pip install "torch<2.2" torchvision --index-url https://download.pytorch.org/whl/cu121

# Commands to run as a job.
# Typical use: launch the main program.
run: |
  cd mnist
  python main.py --epochs 1

Prepare the workdir by cloning:

git clone https://github.com/pytorch/examples.git ~/torch_examples

Launch with sky launch (note: access to GPU instances is needed for this example):

sky launch my_task.yaml

SkyPilot then performs the heavy-lifting for you, including:

  1. Find the lowest priced VM instance type across different clouds
  2. Provision the VM, with auto-failover if the cloud returned capacity errors
  3. Sync the local workdir to the VM
  4. Run the task's setup commands to prepare the VM for running the task
  5. Run the task's run commands

SkyPilot Demo

Refer to Quickstart to get started with SkyPilot.

More Information

To learn more, see our documentation, blog, and community integrations.

Runnable examples:

Case Studies and Integrations: Community Spotlights

Follow updates:

Read the research:

Support and Questions

We are excited to hear your feedback!

For general discussions, join us on the SkyPilot Slack.

Contributing

We welcome all contributions to the project! See CONTRIBUTING for how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skypilot_nightly-1.0.0.dev20241006.tar.gz (909.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file skypilot_nightly-1.0.0.dev20241006.tar.gz.

File metadata

File hashes

Hashes for skypilot_nightly-1.0.0.dev20241006.tar.gz
Algorithm Hash digest
SHA256 344cefbe58a0a6b5e1701de29c4c183a8de8e8188bd3c79b9eadcaf94457cc82
MD5 d6260e73bd311be19c87ea504ee0d9d9
BLAKE2b-256 bdd8fd1c9fa8009534dc451de23ff12e6e18ce2bdaefc5ea2d6bd1c259062392

See more details on using hashes here.

File details

Details for the file skypilot_nightly-1.0.0.dev20241006-py3-none-any.whl.

File metadata

File hashes

Hashes for skypilot_nightly-1.0.0.dev20241006-py3-none-any.whl
Algorithm Hash digest
SHA256 7558740b53511f513532a7df6cb9b37df5d488983abe9e594fee5c685e214aa5
MD5 e0f17a0e95e1f9666d3a42dde8990096
BLAKE2b-256 bfa391b804ea53f3983eb6c08cd89f61011923a0b7f2545d9f48d1002bae020a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page