Skip to main content

A Simulator for Loss Analysis of Classifiers on Gaussian Samples.

Project description

SLACGS Documentation

A Simulator for Loss Analysis of Linear Classifiers on Gaussian Samples in order to evaluate Trade Off Between Samples and Features sizes in Classification Problems on gaussian Samples.

Documentation: https://slacgs.netlify.app/

  • Reports with results will be stored in a Google Spreadsheet for each: Experiment Scenario, Custom Experiment Scenario and another one for the Custom Simulations.

  • The Spreadsheets are stored in a Google Drive folder named 'slacgs.demo.<user_email>' owned by slacgs' google service account and shared with the user's Google Drive account.

  • Also, images with data visualization will be exported to a local folder inside user's local folder (/slacgs/images/ or /content/slacgs/images (for G-colab) )

  • Reports Exported:

    • Loss Report: Contains mainly results focused on Loss Functions evaluations for each dimensionality of the model.
    • Compare Resport: Contains mainly results focused on comparing the performance of the Model using 2 features and 3 features.
    • Home Report (Scenario): Contains results from all simulations in a Scenario and links to the other reports. (available only for comparison between 2D and 3D)
  • Images Exported (<user_home>/slacgs/images/ or /content/slacgs/images [for G-colab] ):

    • Scenario Data plots .gif: Contains a gif with all plots with the data points (n = 1024, dims=[2,3] ) generated for all Models in an Experiment Scenario.
    • Simulation Data plot .png: Contains a plot with the data points (n = 1024, dims=[2,3] ) generated for a Model in a Simulation.
    • Simulation Loss plot .png: Contains a plot with the loss values (Theoretical, Empirical with Train Data, Empirical with Test data) generated for a Model in a Simulation.
  • Loss Functions:

    • Theoretical Loss: estimated using probability theory
    • Empirical Loss with Train Data: estimated using empirical approach with train data
    • Empirical Loss with Test Data: estimated using empirical approach with test data

Experiment

Download Experiment PDF

Demo

  1. Download and Install
  2. Set/Start Report Service
  3. Experiment Scenarios
  4. Demo Functions:
    • Run an Experiment Simulation
      • run a simulation for one of the experiment scenarios and return True if there are still parameters to be simulated and False otherwise
    • Add a Simulation to an Experiment Scenario
      • add simulation results to one of the experiment scenario spreadsheets
    • Run a Custom Scenario
      • run a custom scenario and write the results to a Google Spreadsheet shared with the user
    • Add a Simulation to a Custom Scenario
      • add a simulation to a custom scenario spreadsheet
    • Run a Custom Simulation
      • run a custom simulation for any dimensionality and cardinality
    • Run All Experiment Simulations
      • run all simulations in all experiment scenarios

1. Download And Install

pip install slacgs

2. Set Report Service

from slacgs.demo import *

## opt-1: set report service configuration with your own google cloud service account key file
path_to_google_cloud_service_account_api_key = 'path/to/key.json'
set_report_service_conf(path_to_google_cloud_service_account_api_key)

# opt-2 set report service configuration to use slacgs' server if you have the access password
set_report_service_conf()

3. Experiment Scenarios

from slacgs.demo import print_experiment_scenarios

print_experiment_scenarios()

4 Demo Functions

from slacgs.demo import *

## 1. Run an Experiment Simulation ##
run_experiment_simulation()
  
## 2. Add a Simulation to an Experiment Scenario Spreadsheet ##
### Scenario 1
scenario_number = 1
params = [1, 1, 2.1, 0, 0, 0]
add_simulation_to_experiment_scenario_spreadsheet(params, scenario_number)

### Scenario 2
scenario_number = 2
params = [1, 1, 2, -0.15, 0, 0]
add_simulation_to_experiment_scenario_spreadsheet(params, scenario_number)

### Scenario 3
scenario_number = 3
params = [1, 1, 2, 0, 0.15, 0.15]
add_simulation_to_experiment_scenario_spreadsheet(params, scenario_number)

### Scenario 4
scenario_number = 4
params = [1, 1, 2, -0.1, 0.15, 0.15]
add_simulation_to_experiment_scenario_spreadsheet(params, scenario_number)

## 3. Run a Custom Scenario ##
scenario_list = [[1,1,3,round(0.1*rho,1),0,0] for rho in range(-5,6)]
scenario_number = 5
run_custom_scenario(scenario_list, scenario_number)
  
## 4. Add a Simulation to a Custom Scenario Spreadsheet ##
params = (1, 1, 3, -0.7, 0, 0)
scenario_number = 5
add_simulation_to_custom_scenario_spreadsheet(params, scenario_number)

## 5. Run a Custom Simulation ##
### 2 features
params = [1, 2, 0.4]
run_custom_simulation(params)

### 3 features
params = [1, 1, 4, -0.2, 0.1, 0.1]
run_custom_simulation(params)

### 4 features
params = [1, 1, 1, 2, 0, 0, 0, 0, 0, 0]
run_custom_simulation(params)

### 5 features
params = [1, 1, 2, 2, 2, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.2, 0, 0, 0]
dims_to_compare = (2, 5)
run_custom_simulation(params, dims_to_compare)

### 6 features
params = [1, 2, 3, 4, 5, 6, -0.3, -0.3, -0.2, -0.2, -0.1, -0.1, 0, 0, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3, 0.4]
run_custom_simulation(params)

## 6. Run All Experiment Simulations ##
run_experiment()

4.1 Demo Test Functions (simulations running at 1% of its default number of iterations)

from slacgs.demo import *

## 1. Run an Experiment Simulation ##
run_experiment_simulation_test()

## 2. Add a Simulation to an Experiment Scenario Spreadsheet ##
### scenario 1
scenario_number = 1
params = [1, 1, 2.1, 0, 0, 0]
add_simulation_to_experiment_scenario_spreadsheet_test(params, scenario_number)

### scenario 2
scenario_number = 2
params = [1, 1, 2, -0.15, 0, 0]
add_simulation_to_experiment_scenario_spreadsheet_test(params, scenario_number)

### scenario 3
scenario_number = 3
params = [1, 1, 2, 0, 0.15, 0.15]
add_simulation_to_experiment_scenario_spreadsheet_test(params, scenario_number)

### scenario 4
scenario_number = 4
params = [1, 1, 2, -0.1, 0.15, 0.15]
add_simulation_to_experiment_scenario_spreadsheet_test(params, scenario_number)

## 3. Run a Custom Scenario ##
scenario_list = [[1, 1, 3, round(0.1 * rho, 1), 0, 0] for rho in range(-5, 6)]
scenario_number = 5
run_custom_scenario_test(scenario_list, scenario_number)

## 4. Add a Simulation to a Custom Scenario Spreadsheet ##
params = (1, 1, 3, -0.7, 0, 0)
scenario_number = 5
add_simulation_to_custom_scenario_spreadsheet_test(params, scenario_number)

## 5. Run a Custom Simulation ##
### 2 features
params = [1, 2, 0.4]
run_custom_simulation_test(params)

### 3 features
params = [1, 1, 4, -0.2, 0.1, 0.1]
run_custom_simulation_test(params)

### 4 features
params = [1, 1, 1, 2, 0, 0, 0, 0, 0, 0]
run_custom_simulation_test(params)

### 5 features
params = [1, 1, 2, 2, 2, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.2, 0, 0, 0]
dims_to_compare = _test(2, 5)
run_custom_simulation_test(params, dims_to_compare)

### 6 features
params = [1, 2, 3, 4, 5, 6, -0.3, -0.3, -0.2, -0.2, -0.1, -0.1, 0, 0, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3, 0.4]
run_custom_simulation_test(params)

## 6. Run All Experiment Simulations ##
run_experiment_test()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

slacgs-0.1.9.tar.gz (66.0 kB view details)

Uploaded Source

Built Distribution

slacgs-0.1.9-py3-none-any.whl (67.6 kB view details)

Uploaded Python 3

File details

Details for the file slacgs-0.1.9.tar.gz.

File metadata

  • Download URL: slacgs-0.1.9.tar.gz
  • Upload date:
  • Size: 66.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for slacgs-0.1.9.tar.gz
Algorithm Hash digest
SHA256 5ddd33b81656f11f09b09ed3e027eba9c44f98627c9b967d20fbe19da7a83a03
MD5 3ba664d35ad783c5372807dd091e01ec
BLAKE2b-256 a747fd4f59649fb56012cdce448b3ea29c67a912b249895af6d2a28a31626c70

See more details on using hashes here.

File details

Details for the file slacgs-0.1.9-py3-none-any.whl.

File metadata

  • Download URL: slacgs-0.1.9-py3-none-any.whl
  • Upload date:
  • Size: 67.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for slacgs-0.1.9-py3-none-any.whl
Algorithm Hash digest
SHA256 55ad940bf88b3bc79578ef40e5114b94c3872421a8667d49e03743fda727dd9a
MD5 b26e75b1e3eddd49f42eb3c56ed399d8
BLAKE2b-256 e8e03203ffc9d9588faa37aa8eb44c4f8b019161d2ba0bfe73e7af8485167a16

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page