Skip to main content

Unofficial PyTorch dataset for Slakh

Project description

Slakh PyTorch Dataset

Unofficial PyTorch dataset for Slakh.

This project is a work in progress, expect breaking changes!

Roadmap

Automatic music transcription (AMT) usecase with audio and labels

  • Specify dataset split (original, splits_v2, redux)
  • Add new splits (redux_no_pitch_bend, ...) (Should also be filed upstream) (implemented by skip_pitch_bend_tracks)
  • Load audio mix.flac (all the instruments comined)
  • Load individual audio mixes (need to combine audio in a streaming fashion)
  • Specify train, validation or test group
  • Choose sequence length
  • Reproducable load sequences (usefull for validation group to get consistent results)
  • Add more instruments (eletric-bass, piano, guitar, ...)
  • Choose between having audio in memory or stream from disk (solved by max_files_in_memory)
  • Add to pip

Audio source separation usecase with different audio mixes

  • List to come

Usage

  1. Download the Slakh dataset (see the official website). It's about 100GB compressed so expect using some time on this point.

  2. Install the Python package with pip:

pip install slakh-dataset
  1. Convert the audio to 16 kHz (see https://github.com/ethman/slakh-utils)

  2. You can use the dataset (AMT usecase):

from torch.utils.data import DataLoader
from slakh_dataset import SlakhAmtDataset


dataset = SlakhAmtDataset(
    path='path/to/slakh-16khz-folder'
    split='redux', # 'splits_v2','redux-no-pitch-bend'
    audio='mix', # 'mix'
    instrument='electric-bass', # or `midi_programs`
    # midi_programs=[33, 34, 35, 36, 37],
    groups=['train'],
    skip_pitch_bend_tracks=True,
    sequence_length=327680,
    max_files_in_memory=200,
)

batch_size = 8
loader = DataLoader(dataset, batch_size, shuffle=True, drop_last=True)

# train model on dataset...

Acknowledgement

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

slakh-dataset-0.1.6.tar.gz (47.4 kB view details)

Uploaded Source

Built Distribution

slakh_dataset-0.1.6-py3-none-any.whl (48.1 kB view details)

Uploaded Python 3

File details

Details for the file slakh-dataset-0.1.6.tar.gz.

File metadata

  • Download URL: slakh-dataset-0.1.6.tar.gz
  • Upload date:
  • Size: 47.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.5 CPython/3.7.2 Darwin/20.1.0

File hashes

Hashes for slakh-dataset-0.1.6.tar.gz
Algorithm Hash digest
SHA256 51e2ae23e11db8c97df055afe4e349d529fee387102896d8ff43c9c634798438
MD5 decce7a78fdb16020eeb37b6c868ebe2
BLAKE2b-256 b3e1394a77188b79b40a4ea1790b1a519dc6327835f8d4fc87ff6bfa90be2e66

See more details on using hashes here.

File details

Details for the file slakh_dataset-0.1.6-py3-none-any.whl.

File metadata

  • Download URL: slakh_dataset-0.1.6-py3-none-any.whl
  • Upload date:
  • Size: 48.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.5 CPython/3.7.2 Darwin/20.1.0

File hashes

Hashes for slakh_dataset-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 6857138e3bf87fcc964a7b75fbcdd18e4d58ced17fb9634c34adc28a19b9955f
MD5 86f06a0dd8a8cb71155fa977e119b815
BLAKE2b-256 42a03967f5372ca155d04950ab6c10e3540916a6928520fe32f3f863de425c4f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page