A package for extracting facial expressions from SLEAP analyses
Project description
SLEAPyFaces
A package for extracting facial expressions from SLEAP analyses with sensible assumptions.
Based on these scripts
Description
Sleapyfaces is a data analysis package for extracting facial expressions of mice from SLEAP analyses. It is designed to work with the SLEAP software package, which provides a graphical user interface for annotating animal behavioral videos. More information on SLEAP is available at https://sleap.ai. This package also depends on many assumptions about the data format and structure of the SLEAP analyses. It is not intended to be a general tool for extracting facial expressions from SLEAP analyses, but rather a tool for extracting facial expressions from the specific data format and structure used in the lab of Dr. Kay Tye at The Salk Institute for Biological Studies.
Table of Contents
- SLEAPyFaces
- Description
- Table of Contents
- Getting Started:
- Project Structure
- API Documentation
sleapyfaces.project.Projectsleapyfaces.experiment.Experimentsleapyfaces.io.DAQDatasleapyfaces.io.SLEAPanalysissleapyfaces.io.BehMetadatasleapyfaces.io.VideoMetadatasleapyfaces.normalize.mean_centersleapyfaces.normalize.z_scoresleapyfaces.normalize.pcasleapyfaces.structs.Filesleapyfaces.structs.FileConstructorsleapyfaces.structs.CustomColumn
- Changelog:
Citing:
If you use SLEAPyFaces in your research, this does not fall under standard software according to the Publication Manual for the APA, MLA, AMA, Turabian, IEEE, Vancouver style, Harvard style, or Chicago style guides. Please cite the following:
A. Ehler, J. Delahantey, A. Coley, D. LeDuke, L. Keyes, T.D. Pereira, and K. Tye. SLEAPyFaces: A package for extracting facial expressions from SLEAP analyses with sensible assumptions. SLEAPyFaces python package, v1.0.1, 2023. Retrieved from https://github.com/annie444/sleapyfaces/
BibTeX:
@misc{Ehler2023sleapyfaces,
title={SLEAPyFaces: A package for extracting facial expressions from SLEAP analyses with sensible assumptions.},
author={
Ehler, Analetta and
Delahantey, Jeremey and
Coley, Austin and
LeDuke, Deryn and
Keyes, Laurel and
Pereira, Talmo D and
Tye, Kay},
url={https://github.com/annie444/sleapyfaces/},
journal={SLEAPyFaces python package},
publisher={GitHub repository},
volume={v1.0.1},
year={2023},
month={Dec},
day={27}
}
Please also cite the original SLEAP paper:
T.D. Pereira, N. Tabris, A. Matsliah, D. M. Turner, J. Li, S. Ravindranath, E. S. Papadoyannis, E. Normand, D. S. Deutsch, Z. Y. Wang, G. C. McKenzie-Smith, C. C. Mitelut, M. D. Castro, J. D’Uva, M. Kislin, D. H. Sanes, S. D. Kocher, S. S-H, A. L. Falkner, J. W. Shaevitz, and M. Murthy. Sleap: A deep learning system for multi-animal pose tracking. Nature Methods, 19(4), 2022
BibTeX:
@ARTICLE{Pereira2022sleap,
title={SLEAP: A deep learning system for multi-animal pose tracking},
author={Pereira, Talmo D and
Tabris, Nathaniel and
Matsliah, Arie and
Turner, David M and
Li, Junyu and
Ravindranath, Shruthi and
Papadoyannis, Eleni S and
Normand, Edna and
Deutsch, David S and
Wang, Z. Yan and
McKenzie-Smith, Grace C and
Mitelut, Catalin C and
Castro, Marielisa Diez and
D'Uva, John and
Kislin, Mikhail and
Sanes, Dan H and
Kocher, Sarah D and
Samuel S-H and
Falkner, Annegret L and
Shaevitz, Joshua W and
Murthy, Mala},
journal={Nature Methods},
volume={19},
number={4},
year={2022},
publisher={Nature Publishing Group}
}
}
License
sleapyfaces is distributed under the terms of the MIT license. The full license text is available in the LICENSE file.
Getting Started:
Installation
Using pip:
pip install sleapyfaces
Using conda (coming soon):
conda install -c conda-forge sleapyfaces
Basic Usage Step by Step
Importing the package
For basic usage, the package can be imported with the following:
from sleapyfaces.project import Project
Alternatively, the package can be imported with the following:
import sleapyfaces as sf
Creating a project
The project object is the basis for the data analysis. It serves as a container for all of the data produced from a series of experiments, and allows a root object to be created for the data analysis. The project object is initialized with a series of file or file glob patterns, which are used to find the files associated with each experiment. The project object also requires a base path, which is the root directory for the project. The project object can be initialized with the optional get_glob argument set to True, which will automatically find the files associated with each experiment. Alternatively, the get_glob argument can be set to False (default), which will allow the user to manually set the files associated with each experiment as the file arguments. Additionally, there is an iterators argument, which is a dictionary of iterators that can be used to iterate over the project structure. The iterators argument is optional, and if not provided, the project object will assume that the project follows a specific structure.
Without iterators + with glob:
project = Project(
DAQFile="*.csv",
BehFile="*.json",
SLEAPFile="*.h5",
VideoFile="*.mp4",
base="/base/path/to/project",
get_glob= True
)
With iterators + without glob:
project = Project(
DAQFile="DAQOutput.csv",
BehFile="ExperimentMetadata.json",
SLEAPFile="SLEAPAnalysis.h5",
VideoFile="FacialVideo.mp4",
base="/base/path/to/project",
iterators={
"Label 1": "/relative/path/to/week1",
"Label 2": "/relative/path/to/week2",
"Label 3": "/relative/path/to/week3",
"Label 4": "/relative/path/to/week4",
...
}
}
)
The
iteratorspaths are relative to thebasepath. If no iterators are provided, the project object will assume that the project follows the default structure outlined below. The default labels then are"week 1", "week 2", "week 3", "week 4", ....
Building the data
The project object has a buildColumns method, which is used to build the columns of the data. The buildColumns method takes two arguments: columns and values. The columns argument is a list of column titles, and the values argument is a list of values for each column. The buildColumns method will build the columns of the data, and will also build the iterators for each column. The buildColumns method can be called multiple times, and each time it is called, it will add a new column to the data.
project.buildColumns(
columns=["Mouse"],
values=["CSE008"]
)
Building the trials
The project object has a buildTrials method, which is used to build the trials of the data. The buildTrials method takes four arguments: TrackedData, Reduced, start_buffer, and end_buffer. The TrackedData argument is a list of the tracked data columns from the DAQ file that will be used to build the based on the DAQ timestamps. The Reduced argument is a list of boolean values, which indicate whether the tracked data should be reduced to a single value for each trial. This is used in this example for the "LED590_on" column, as the LED turns on and off multiple times during the experiment. To keep the trialData from intitializing a new trial for each timestamp in the "LED590_on" column, reduced is set to true. The start_buffer argument is the number of milliseconds before the trial start time that should be included in the trial. The end_buffer argument is the number of milliseconds after the trial start time that should be included in the trial. The buildTrials method will build the trials of the data, and will also build the iterators for each trial. The buildTrials method can be called multiple times, and each time it is called, it will rebuild the trials of the data. This is useful if you want to build the trials based on different tracked data columns, or if you want to change the start and end buffers.
project.buildTrials(
TrackedData=["Speaker_on", "LED590_on"],
Reduced=[False, True],
start_buffer=10000,
end_buffer=13000
)
Normalizing the data
So far there are two normalization methods available:
- Mean Centering
The meanCenter method will iterate recursively to the smallest data frame in the project, and then mean-center its way up the project tree. More precisely, the meanCenter method first mean centers each trial from each experiment. Then, it will meanCenter each experiment in the project. Finally, it will meanCenter across all the experiments in the project. This method will mean-center the data in place, and will not return anything. However, it does expose a all_data attribute, which is a pd.DataFrame of all the data in the project.
project.meanCenter()
- Z-Scoring
The zScore method assumes the data has already been mean-centered, and will further z-score the data across all the experiments in the project.
The zScore method will iterate recursively to the smallest data frame in the project, and then z-score its way up the project tree. This method will z-score the data in place, and will not return anything.
project.zScore()
For convenience, you can also normalize the data in one step:
project.analyze()
Complete Example
This implementation of the data objects is roughly 10x faster than the scripted version of the data analysis. The full example is shown below:
from sleapyfaces.project import Project
project = Project(
DAQFile="*.csv",
BehFile="*.json",
SLEAPFile="*.h5",
VideoFile="*.mp4",
base="/base/path/to/project",
get_glob= True
)
project.buildColumns(
columns=["Mouse"],
values=["CSE008"]
)
project.buildTrials(
TrackedData=["Speaker_on", "LED590_on"],
Reduced=[False, True],
start_buffer=10000,
end_buffer=13000
)
project.analyze()
project.visualize()
data = project.pcas["pca3d"]
Project Structure
Data Files Formats
DAQ file
This file is the output of the DAQ collection, which is used to record the TTL pulses from all of the stimuli used in the experiment. The DAQ file is usually a CSV file, which contains the timestamps for each TTL pulse, and a column for each TTL pulse being tracked. These timestamps are all relative to the experiment start time and are in milliseconds. The TTL pulses are named according to the following convention:
Stimuli_on- The TTL pulse for when the stimuli startsStimuli_on- The TTL pulse for when the stimuli ends
Behavioral metadata file
This file is the output of the experimental parameters output from bruker_control as a JSON file. This file contains the experimental parameters for the experiment, including the trial types used, the number of trials, and the inter-trial interval. SLEAPyFaces assumed that the file follows the following structure:
{
"beh_metadata": {
...
"any_keys": "any_values",
...
"trialArray": [1, 1, 1, 0, 1, 0, 1, 1, ...],
"ITIArray": [16848, 23012, 25678, 19107, ...],
...
"any_keys": "any_values",
...
}
}
Note that this is the default output from bruker_control and does not need to be modified.
SLEAP file
The SLEAP file is the output of the sleap-convert command from the SLEAP software package, which is used to track the facial expressions of the mice. The SLEAP file is a HDF5 file, which contains the tracking data for each frame of the video using a common skeleton across all experiments. The SLEAP file also contains the metadata for the experiment, which includes the tracking accuracy, the number of frames in the video, and the number of mice in the video. The SLEAP analysis file can be obtained from the following command:
sleap-convert --format analysis -o /path/to/output.h5 /path/to/input.slp
or
sleap-convert --format h5 -o /path/to/output.h5 /path/to/input.slp
Further documentation on this command is available on this SLEAP documentation page.
Video file
The video file is the raw video file that was used to generate the facial trackings. The video file is used to extract the frame rate of the video, which is used to accurately calculate the timestamps and append them to the SLEAP data. The video file can be any video format that is supported by ffmpeg, which includes .mp4, .avi, .mov, .mkv, and many more.
Project Directory Structure
/base/path/to/project
│
└───20231208
│ │ DAQOutput.csv
│ │ ExperimentMetadata.json
| | SLEAPAnalysis.h5
| | FacialVideo.mp4
│
└───20231215
| │ DAQOutput.csv
│ │ ExperimentMetadata.json
| | SLEAPAnalysis.h5
| | FacialVideo.mp4
|
└─── ...
Note that the files do not have to be named as shown above, but the file extensions must be correct for the DAQ file as *.csv, the metadata file as *.json, and the SLEAP analysis file as *.h5. The video file can be any video format that is supported by ffmpeg.
By default, the sub-directories can be named anything, as long as the date proceeds any other naming. The dates must be in the format YYYYMMDD, so the experiments can be sorted by date.
e.g.
20231208_Exp1or20231208_Exp2are valid file names, butExp1_20231208is not
However, this functionality can be disabled by specifying the sub-directory paths and their respective labels in the iterators argument of the Project object. For example, if the project directory structure is as follows:
/base/path/to/project
│
└───Day1
| |
| └───Exp1
│ │ | DAQOutput.csv
│ │ | ExperimentMetadata.json
| | | SLEAPAnalysis.h5
| | | FacialVideo.mp4
| |
| └───Exp2
│ │ | DAQOutput.csv
│ │ | ExperimentMetadata.json
| | | SLEAPAnalysis.h5
| | | FacialVideo.mp4
│
└───Day2
| |
| └───Exp1
│ │ | DAQOutput.csv
│ │ | ExperimentMetadata.json
| | | SLEAPAnalysis.h5
| | | FacialVideo.mp4
| |
| └───Exp2
│ │ | DAQOutput.csv
│ │ | ExperimentMetadata.json
| | | SLEAPAnalysis.h5
| | | FacialVideo.mp4
|
└─── ...
Then the Project object can be initialized as follows:
proj = Project(
DAQFile="DAQOutput.csv",
BehFile="ExperimentMetadata.json",
SLEAPFile="SLEAPAnalysis.h5",
VideoFile="FacialVideo.mp4",
base="/base/path/to/project",
iterators={
"Day1-Exp1": "/Day1/Exp1",
"Day1-Exp2": "/Day1/Exp2",
"Day2-Exp1": "/Day2/Exp1",
"Day2-Exp2": "/Day2/Exp2",
...
}
}
)
API Documentation
sleapyfaces.project.Project
proj = sleapyfaces.project.Project(
DAQFile: str,
BehFile: str,
SLEAPFile: str,
VideoFile: str,
base: str,
iterator: dict[str, str] | None, # Optional
get_glob: bool = False, # Optional
)
Projectis the main class for thesleapyfacespackage. It is used to initialize the project and iterate over the project structure.- Args:
DAQFile(string): The naming convention for the DAQ files (e.g. "*_events.csv" or "DAQOutput.csv")ExprMetaFile(string): The naming convention for the experimental structure files (e.g. "*_config.json" or "BehMetadata.json")SLEAPFile(string): The naming convention for the SLEAP files (e.g. "*_sleap.h5" or "SLEAP.h5")VideoFile(string): The naming convention for the video files (e.g. "*.mp4" or "video.avi")base(string): Base path of the project (e.g. "/specialk_cs/2p/raw/CSE009")iterator(dictionary[string, string], optional): Iterator for the project files, with keys as the label and values as the folder name (e.g. {"week 1": "20211105", "week 2": "20211112"})get_glob(boolean, default =False): Whether to use glob to find the files (e.g. True or False). Default is False.- NOTE: if glob is True, make sure to at least include the file extension with an asterisk in the naming convention
- e.g.
DAQFile="*.csv"orSLEAPFile="*.h5"
- Attributes:
exprs(list[Experiment]): List of the experiment objectsfiles(list[FileConstructor]):FileConstructorobject
- Args:
sleapyfaces.project.Project.buildColumns
proj.buildColumns(
columns: list[str],
values: list[str],
)
- Builds the custom columns for the project and builds the data for each experiment
- Args:
columns(list[string]): the column titlesvalues(list[any]): the data for each column
- Initializes attributes:
custom_columns(list[CustomColumn]): list of custom columnsall_data(pd.DataFrame): the data for all experiments concatenated together
- Args:
sleapyfaces.project.Project.buildTrials
proj.buildTrials(
TrackedData: list[str],
Reduced: list[bool],
start_buffer: int = 10000, # Optional
end_buffer: int = 13000, # Optional
)
- Parses the data from each experiment into its individual trials
- Args:
TrackedData(list[string]): The title of the columns from the DAQ data to be trackedReduced(list[boolean]): The corresponding boolean for whether the DAQ data is to be reduced (True) or not (False)start_buffer(integer, optional): The time in milliseconds before the trial start to capture. Defaults to 10000.end_buffer(integer, optional): The time in milliseconds after the trial start to capture. Defaults to 13000.
- Initializes attributes:
exprs[i].trials(pd.DataFrame): the data frame containing the concatenated trial data for each experimentexprs[i].trialData(list[pd.DataFrame]): the list of data frames containing the trial data for each trial for each experiment
- Args:
sleapyfaces.project.Project.meanCenter
proj.meanCenter()
- Recursively mean centers the data for each trial for each experiment
- Initializes attributes:
all_data(pd.DataFrame): the mean centered data for all trials and experiments concatenated together
- Initializes attributes:
sleapyfaces.project.Project.zScore
proj.zScore()
- Z scores the mean centered data for each experiment
- Updates attributes:
all_data(pd.DataFrame): the z-scored data for all experiments concatenated together
- Updates attributes:
sleapyfaces.project.Project.analyze
proj.analyze()
- Runs the mean centering and z scoring functions
sleapyfaces.project.Project.visualize
proj.visualize()
- Reduces
all_datato 2 and 3 dimensions using PCA- Initializes attributes:
pcas(dictionary[string,pd.DataFrame]): a dictionary containing the 2 and 3 dimensional PCA data for each experiment- the dictionary keys are
'pca2d','pca3d'
- Initializes attributes:
sleapyfaces.experiment.Experiment
expr = sleapyfaces.experiment.Experiment(
name: str,
files: sleapyfaces.structs.FileConstructor,
)
- Class constructor for the Experiment object.
- Args:
name(string): The name of the experiment.files(FileConstructor): TheFileConstructorobject containing the paths to the experiment files.
- Attributes:
name(string): The name of the experiment.files(FileConstructor): TheFileConstructorobject containing the paths to the experiment files.sleap(SLEAPanalysis): TheSLEAPanalysisobject containing the SLEAP data.beh(BehMetadata): TheBehMetadataobject containing the behavior metadata.video(VideoMetadata): TheVideoMetadataobject containing the video metadata.daq(DAQData): TheDAQDataobject containing the DAQ data.numeric_columns(list[string]): A list of the titles of the numeric columns in the SLEAP data.
- Args:
sleapyfaces.experiment.Experiment.buildData
expr.buildData(
CustomColumns: list[sleapyfaces.structs.CustomColumn]
)
- Builds the data for the experiment.
- Args:
CustomColumns(list[CustomColumn]): A list of theCustomColumnobjects to be added to the experiment.
- Initializes attributes:
sleap.tracks(pd.DataFrame): The SLEAP data.custom_columns(pd.DataFrame): The non-numeric columns.
- Args:
sleapyfaces.experiment.Experiment.append
expr.append(
item: pd.Series | pd.DataFrame
)
- Appends a column to the SLEAP data.
- Args:
item(pd.Seriesorpd.DataFrame): A pandas series or dataframe to be appended to the SLEAP data.
- Updates attributes:
sleap.tracks(pd.DataFrame): The SLEAP data.custom_columns(pd.DataFrame): The non-numeric columns.
- Args:
sleapyfaces.experiment.Experiment.buildTrials
expr.buildTrials(
TrackedData: list[str],
Reduced: list[bool],
start_buffer: int = 10000, # Optional
end_buffer: int = 13000, # Optional
)
- Converts the data into trial by trial format.
- Args:
TrackedData(list[string]): the list of columns from the DAQ data that signify the START of each trial.Reduced(list[boolean]): a boolean list with the same length as the TrackedData list that signifies the columns from the tracked data with quick TTL pulses that occur during the trial.- (e.g. the LED TTL pulse may signify the beginning of a trial, but during the trial the LED turns on and off, so the LED TTL column should be marked as True)
start_buffer(integer, optional): The time in miliseconds you want to capture before the trial starts. Defaults to 10000 (i.e. 10 seconds).end_buffer(integer, optional): The time in miliseconds you want to capture after the trial starts. Defaults to 13000 (i.e. 13 seconds).
- Initializes attributes:
trials(pd.DataFrame): the dataframe with the data in trial by trial format, with a metaindex of trial number and frame numbertrialData(list[pd.DataFrame]): a list of the dataframes with the individual trial data.
- Args:
sleapyfaces.io.DAQData
daq = sleapyfaces.io.DAQData(
path: str | PathLike[string]
)
- Cache for DAQ data.
- Args:
path(string or PathLike[string]): Path to the directory containing the DAQ data.
- Attrs:
cache(pd.DataFrame): Pandas DataFrame containing the DAQ data.columns(list[string]): List of column names in the cache.
- Args:
sleapyfaces.io.DAQData.append
daq.append(
name: str,
value: list[any]
)
- Takes in a list with a name and appends it to the cache as a column
- Args:
name(string): The column name.value(list[any]): The column data.
- Updates attributes:
cache(pd.DataFrame): Pandas DataFrame containing the DAQ data.columns(list[string]): List of column names in the cache.
- Args:
sleapyfaces.io.DAQData.saveData
daq.saveData(
filename: str | PathLike[str] | FileIO,
)
- saves the cached data to a csv file
- Args:
filename(Text | PathLike[Text] | BufferedWriter): the path and name of the file to save the data to
- Args:
sleapyfaces.io.SLEAPanalysis
sleap = sleapyfaces.io.SLEAPanalysis(
path: str | PathLike[string]
)
- a class for reading and storing
SLEAPanalysis files- Args:
path(string or PathLike[string]): path to the directory containing the SLEAP analysis file
- Attributes:
data(dictionary): dictionary of all the data from theSLEAPanalysis filetrack_names(list): list of the track names from theSLEAPanalysis filetracks(pd.DataFrame): a pandas DataFrame containing the tracks from theSLEAPanalysis file (with missing frames filled in using a linear interpolation method)
- Args:
sleapyfaces.io.SLEAPanalysis.getDatasets
sleap.getDatasets()
- gets the datasets from the
SLEAPanalysis file- Initializes Attributes:
data(dictionary): dictionary of all the data from theSLEAPanalysis file
- Initializes Attributes:
sleapyfaces.io.SLEAPanalysis.getTracks
sleap.getTracks()
- gets the tracks from the
SLEAPanalysis file- Initializes Attributes:
tracks(pd.DataFrame): a pandas DataFrame containing the tracks from theSLEAPanalysis file (with missing frames filled in using a linear interpolation method)
- Initializes Attributes:
sleapyfaces.io.SLEAPanalysis.getTrackNames
sleap.getTrackNames()
- gets the track names from the
SLEAPanalysis file- Initializes Attributes:
track_names(List): list of the track names from theSLEAPanalysis file
- Initializes Attributes:
sleapyfaces.io.SLEAPanalysis.append
sleap.append(
item: pd.Series | pd.DataFrame
)
- Appends a column to the tracks DataFrame
- Args:
item(pd.Seriesorpd.DataFrame): The column to append to the tracks DataFrame
- Updates Attributes:
tracks(pd.DataFrame): a pandas DataFrame containing the tracks from theSLEAPanalysis file
- Args:
sleapyfaces.io.SLEAPanalysis.saveData
sleap.saveData(
filename: str | PathLike[str],
path: str="SLEAP" # Optional
)
- saves the modified
SLEAPanalysis data to an HDF5 file- Args:
filename(string or PathLike[string]): the path and name of the file to save the data to- path (string, optional): the internal HDF5 path to save the data to. Defaults to "SLEAP".
- Args:
sleapyfaces.io.BehMetadata
beh = sleapyfaces.io.BehMetadata(
path: str | PathLike[string],
MetaDataKey: str="beh_metadata", # Optional
TrialArrayKey: str="trialArray", # Optional
ITIArrayKey: str="ITIArray", # Optional
)
- Cache for JSON data.
- Args:
path(string of PathLike[string]): Path to the file containing the JSON data.MetaDataKey(string, optional): Key for the metadata in the JSON data. Defaults to"beh_metadata"based onbruker_control.TrialArrayKey(string, optional): Key for the trial array in the JSON data. Defaults to"trialArray"based onbruker_control.ITIArrayKey(string, optional): Key for the inter-trial interval array in the JSON data. Defaults to"ITIArray"based onbruker_control.- Bruker Control Repository:
- Link: (https://github.com/Tyelab/bruker_control)[https://github.com/Tyelab/bruker_control]
- Author: Jeremy Delahanty
- Bruker Control Repository:
- Attributes:
cache(pd.DataFrame): Pandas DataFrame containing the JSON data.columns(list): List of column names in the cache.
- Args:
sleapyfaces.io.BehMetadata.saveData
beh.saveData(
filename: str | PathLike[str] | FileIO,
)
- Saves the DAQ data to a CSV file.
- Args:
filename(string or PathLike[string] or FileIO): The name and path of the file to save the data to.
- Args:
sleapyfaces.io.VideoMetadata
video = sleapyfaces.io.VideoMetadata(
path: str | PathLike[string],
)
- A class for caching the video metadata.
- Args:
path(string of PathLike[string]): Path to the directory containing the video metadata.
- Attributes:
cache(dictionary): Dictionary containing the video metadata from ffmpeg.fps(float): The precise frames per second of the video.
- Args:
sleapyfaces.io.VideoMetadata.saveData
video.saveData(
filename: str | PathLike[str] | FileIO,
)
- Saves the video metadata to a json file.
- Args:
filename(string or PathLike[string] or FileIO): the name and path of the file to save the data to.
- Args:
sleapyfaces.normalize.mean_center
sleapyfaces.normalize.mean_center(
data: pd.DataFrame,
track_names: list[str]
) -> pd.DataFrame
- Mean centers the data for each track.
- Args:
data(pd.DataFrame): The data to mean center.track_names(list[str]): The names of the tracks to mean center.
- Returns:
pd.DataFrame: The mean centered data.
- Args:
sleapyfaces.normalize.z_score
sleapyfaces.normalize.z_score(
data: pd.DataFrame,
track_names: list[str]
) -> pd.DataFrame
- Z-score the data.
- Args:
data(pd.DataFrame): The data to z-score.track_names(list[str]): The names of the tracks to z-score.
- Returns:
pd.DataFrame: The z-scored data.
- Args:
sleapyfaces.normalize.pca
sleapyfaces.normalize.pca(
data: pd.DataFrame,
track_names: list[str]
) -> dict[str, pd.DataFrame]
- Runs 2D and 3D PCA dimensionality reduction on the data.
- Args:
data(pd.DataFrame): The data to be reduced.track_names(list[str]): The names of the tracks to be reduced.
- Returns:
- dictionary[string,
pd.DataFrame]: The reduced data with keys "pca2d" and "pca3d". -i.e.{"pca2d": pd.DataFrame, "pca3d": pd.DataFrame}
- dictionary[string,
- Args:
sleapyfaces.structs.File
file = sleapyfaces.structs.File(
basepath: str | PathLike[str],
filename: str,
get_glob: bool=False, # Optional
)
- A structured file object that contains the base path and filename of a file.
- Args:
basepath(string): the path to the file.filename(string): the name of the file, or a glob pattern ifget_globisTrue.get_glob(bool, optional): whether or not to get the glob pattern. Defaults toFalse.
- Attributes:
file(string): the complete filepathiPath(i)(string): the path to theith file in the glob pattern.
- Args:
sleapyfaces.structs.FileConstructor
files = sleapyfaces.structs.FileConstructor(
daq: File,
sleap: File,
beh: File,
video: File
)
- Takes in the base paths and filenames of the experimental data and returns them as a structured object.
- Args/Attributes:
daq(File): The location of the DAQ data file.sleap(File): The location of the SLEAP analysis file.beh(File): The location of the behavioral metadata file.video(File): The location of the video file.
- Args/Attributes:
sleapyfaces.structs.CustomColumn
column = sleapyfaces.structs.CustomColumn(
ColumnTitle: str,
ColumnData: str | int | float | bool
)
- Takes in the base paths and filenames of the experimental data and returns them as a structured object.
- Args:
ColumnTitle(string): The title of the column.ColumnData(string or integer or float or boolean): The data to be added to the column.
- Args:
sleapyfaces.structs.CustomColumn.buildColumn
column.buildColumn(
length: int,
)
- Initializes a column of a given length.
- Args:
length(integer): The length of the column to be built.
- Initializes Attributes:
Column(pd.DataFrame): The initialized column at a given length.
- Args:
Changelog:
Version 1.0.0 (2022-12-27)
- iterate (repeatedly) over each mouse and each week (each mouse and each experiment)
- get project files (experimental) structure
- initialize an iterator over the project structure
- get daq data from CSV file
- read CSV files
- save each column from CSV file
- Note: CSV columns are of differing lengths
- get “beh_metadata” from json metadata
- read JSON file
- grab the values for key “beh_metadata”
- get the values of sub key “trialArray”
- get the values of sub-key “ITIArray”
- get video metadata from *.mp4 file (with ffmpeg.probe)
- read in the *.mp4 metadata
- select the correct video stream
- get the average frames per second
- get SLEAP data from *.h5 file
- open h5 file
- get transposed values of key “tracks” (tracking_locations)
- fill missing locations (linear regress. fit)
- get transposed values of key “edge_inds”
- get values of key “edge_names”
- get transposed values of “instance_scores”
- get transposed values of “point_scores”
- get values of “track_occupancy”
- get transposed values of “tracking_scores”
- get decoded values of “node_names” (make sure there's no encoding issues)
- deconstruct SLEAP points into x and y points (across all frames)
- iterate over each node
- breakup the 4D array “tracks” into 1D array for x and y values respectively
- Note: [frame, node, x/y, color] for greyscale the color dimension is 1D (i.e. essentially the 4D array is 3D because the color dimension is constant)
- iterate over each frame
- assign mouse, week, frame #, and timestamp (using average frames per second)
- Split data into individual trials by trial type using the Speaker and LED data from the CSV daq data
- initialize trial iterators for the consistently documented points from the daq CSV
- iterate over each trial in “trialArray”
- get the index of 10sec before and 13sec after trial start
- for each feature, grab the start and end indices
- store data from each trial in a pd.dataframe
- concatenate all pd.dataframes together for each video
- concatenate the pd.dataframes from each video together for each mouse (base expr split)
- Prepare the data
- (opt.) mean center across all points for a single trial
- mean center across all trials for a single experiment
- mean center across all experiments for a single mouse
- mean center across all mice
- (opt.) z-score mean-centered data
- Analyze the data
- Perform 2D and 3D PCAs on all data (raw, centered, by trial, by week, by mouse, etc…)
- apply gaussian kernel to PCA outputs
- Save the data
- write everything to HDF5 file(s)
Version 1.0.1
- add exhaustive documentation
- add inline documentation
- strengthen type hints
- Fix bug where the
CustomColumnclass is not properly initialized - Fix bug where the
CustomColumnclass is not properly built - Fix bug where the
CustomColumnclass is not properly appended - Fix bug where the
trialsandtrialDataattributes were not properly initialized - Fix bug where the
trialsandtrialDataattributes were not properly built - Fix bug where the
meanCenterdid not properly mean center the data recursively
Version 1.1.0 (in progress)
- add support for multiple mice
- add clustering/prediction algorithm(s)
- add velocity, acceleration, and jerk calculations
- add save option for all data
- add plotting functions
- clustering features
- distance to a point
- vector to a point (theta, magnitude) or (angle, distance)
- velocity/acceleration
- distance to centroid
- distance between given points
- distance to a point
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file sleapyfaces-1.2.0b2.dev10.tar.gz.
File metadata
- Download URL: sleapyfaces-1.2.0b2.dev10.tar.gz
- Upload date:
- Size: 3.0 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: python-httpx/0.23.0
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
2b48524968e557104765200545c27eb104ae6d3758728f392f70ea13c2fd16ef
|
|
| MD5 |
9b6391a2a990c1e4e9068da4edb4c5af
|
|
| BLAKE2b-256 |
23c885265a267649eefd3c9aa6c4ae64d9744a9f1c6b7fec27e13d7e60e8e2b1
|
File details
Details for the file sleapyfaces-1.2.0b2.dev10-py3-none-any.whl.
File metadata
- Download URL: sleapyfaces-1.2.0b2.dev10-py3-none-any.whl
- Upload date:
- Size: 45.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: python-httpx/0.23.0
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
e2cd07d35b56d30f1cf63bdc2e20f9b7c99a937dcd348bb7beaaf917cb978531
|
|
| MD5 |
377094cd46ec408282959e9ce88049eb
|
|
| BLAKE2b-256 |
8fe4168a30edc32ec97113007fc82e05efab62c869aa0c15f902457adf5289e1
|