Skip to main content

Python wrapper for SLEUTH urban growth model.

Project description

This library is an object-oriented wrapper for the SLEUTH urban growth model.

It will automatically create scenario files from directories containing data layers and it can run simulations through MPI and HT-Condor.

Installation

You may install this library and helper scripts using pip.

$ pip install sleuth_automation

Application Programming Interface

import sleuth_automation as sa

# the library must be configured at least with the path to SLEUTH
sa.configure(sleuth_path='/opt/sleuth',
             use_mpi=True, mpi_cores=32)


# a directory containing input layers is given to a location instance
l = sa.Location('my_location',
                '/path/to/my_location')

l.calibrate_coarse()
l.calibrate_fine()
l.calibrate_final()

l.sleuth_predict(end=2050)

Command Line Interface

A single run may be achieved using the included sleuth_run.py script.

$ sleuth_run.py --sleuth_path /opt/sleuth/ \
                --location_dir /path/to/location/ \
                --location_name my_location \
                --mpi_cores 40 \
                --montecarlo_iterations 50 \
                --predict_end 2060

This will create scenario files for coarse, fine and final stages of calibration, extracting parameters from the control_stats.log files, and run predict.

If one wants to predict for several locations, one may group them in a directory and run them as a batch. Using the create_sleuth_condor_batch.py one may create a batch run for the HT-Condor queue management system.

$ create_sleuth_condor_batch.py --sleuth_path /opt/sleuth/ \
                                --region_dir /path/to/locations_group/ \
                                --mpi_cores 32 \
                                --predict_end 2060

This will create a submit.condor file in the locations directory, setup with the appropiate sleuth_run.py commands.

Documentation

https://readthedocs.org/projects/sleuth-automation/badge/?version=latest

Full documentation at http://sleuth-automation.readthedocs.io

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sleuth_automation-3.0.3.tar.gz (10.8 kB view details)

Uploaded Source

Built Distribution

sleuth_automation-3.0.3-py3-none-any.whl (24.1 kB view details)

Uploaded Python 3

File details

Details for the file sleuth_automation-3.0.3.tar.gz.

File metadata

  • Download URL: sleuth_automation-3.0.3.tar.gz
  • Upload date:
  • Size: 10.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.6

File hashes

Hashes for sleuth_automation-3.0.3.tar.gz
Algorithm Hash digest
SHA256 54aff5ee37fabbbbd21271a36067ef6c108ca52d648a127292d337910e8eb866
MD5 664863e4a5010da9a9870281ba9e783c
BLAKE2b-256 db8b095c18f519bca4696cba1abd2ece3b2dcf34f3ebf05e8e2d119164a835c6

See more details on using hashes here.

File details

Details for the file sleuth_automation-3.0.3-py3-none-any.whl.

File metadata

  • Download URL: sleuth_automation-3.0.3-py3-none-any.whl
  • Upload date:
  • Size: 24.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.6

File hashes

Hashes for sleuth_automation-3.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 0c2f4965c807017b81673b3081e2df28a84f7168fcba740669835972771223ef
MD5 f7661ee33148190e1ceba33e7d9759e9
BLAKE2b-256 351bbacbada4a88e45df3da9a2b9f40ef64c5d2e51e07288b5af2f88b5e683d7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page