Skip to main content

Python wrapper for SLEUTH urban growth model.

Project description

This library is an object-oriented wrapper for the SLEUTH urban growth model.

It will automatically create scenario files from directories containing data layers and it can run simulations through MPI and HT-Condor.

Installation

You may install this library and helper scripts using pip.

$ pip install sleuth_automation

Application Programming Interface

import sleuth_automation as sa

# the library must be configured at least with the path to SLEUTH
sa.configure(sleuth_path='/path/to/sleuth',
             use_mpi=True, mpi_cores=32)


# a directory containing input layers is given to a location instance
l = sa.Location('MyLocation',
                '/path/to/MyLocation')

l.calibrate_coarse()
l.calibrate_fine()
l.calibrate_final()

l.sleuth_predict(2017, 2050)

Command Line Interface

A single run may be achieved using the included sleuth_run.py script.

$ sleuth_run.py --sleuth_path /path/to/sleuth/ \
                --location_dir /path/to/my_location/ \
                --location_name my_location \
                --mpi_cores 40 \
                --predict_start 2017 \
                --predict_end 2050

This will create scenario files for coarse, fine and final stages of calibration, extracting parameters from the control_stats.log files, and run predict.

If one wants to predict for several locations, one may group them in a directory and run them as a batch. Using the create_sleuth_condor_batch.py one may create a batch run for the HT-Condor queue management system.

$ create_sleuth_condor_batch.py --sleuth_path /path/to/sleuth \
                                --locations_dir /path/to/locations_group \
                                --mpi_cores 32 \
                                --predict_start 2017 --predict_end 2050

This will create a submit.condor file in the locations directory, setup with the appropiate sleuth_run.py commands.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sleuth_automation-1.0.tar.gz (6.1 kB view details)

Uploaded Source

File details

Details for the file sleuth_automation-1.0.tar.gz.

File metadata

File hashes

Hashes for sleuth_automation-1.0.tar.gz
Algorithm Hash digest
SHA256 fa8b1bb617bccbdc0333a0af90c1f49c6812568b8db495257810573888924f30
MD5 bd36b795b1d859da5b99cdc252973dc0
BLAKE2b-256 8f3ade3ff0958bea9c630658f671134577b43cf1f505b68ed41cda83c87809ab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page