Python wrapper for SLEUTH urban growth model.
Project description
This library is an object-oriented wrapper for the SLEUTH urban growth model.
It will automatically create scenario files from directories containing data layers and it can run simulations through MPI and HT-Condor.
Installation
You may install this library and helper scripts using pip.
$ pip install sleuth_automation
Application Programming Interface
import sleuth_automation as sa
# the library must be configured at least with the path to SLEUTH
sa.configure(sleuth_path='/path/to/sleuth',
use_mpi=True, mpi_cores=32)
# a directory containing input layers is given to a location instance
l = sa.Location('MyLocation',
'/path/to/MyLocation')
l.calibrate_coarse()
l.calibrate_fine()
l.calibrate_final()
l.sleuth_predict(2017, 2050)
Command Line Interface
A single run may be achieved using the included sleuth_run.py script.
$ sleuth_run.py --sleuth_path /path/to/sleuth/ \
--location_dir /path/to/my_location/ \
--location_name my_location \
--mpi_cores 40 \
--predict_start 2017 \
--predict_end 2050
This will create scenario files for coarse, fine and final stages of calibration, extracting parameters from the control_stats.log files, and run predict.
If one wants to predict for several locations, one may group them in a directory and run them as a batch. Using the create_sleuth_condor_batch.py one may create a batch run for the HT-Condor queue management system.
$ create_sleuth_condor_batch.py --sleuth_path /path/to/sleuth \
--locations_dir /path/to/locations_group \
--mpi_cores 32 \
--predict_start 2017 --predict_end 2050
This will create a submit.condor file in the locations directory, setup with the appropiate sleuth_run.py commands.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file sleuth_automation-1.0.tar.gz
.
File metadata
- Download URL: sleuth_automation-1.0.tar.gz
- Upload date:
- Size: 6.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fa8b1bb617bccbdc0333a0af90c1f49c6812568b8db495257810573888924f30 |
|
MD5 | bd36b795b1d859da5b99cdc252973dc0 |
|
BLAKE2b-256 | 8f3ade3ff0958bea9c630658f671134577b43cf1f505b68ed41cda83c87809ab |