Skip to main content

Python wrapper for SLEUTH urban growth model.

Project description

This library is an object-oriented wrapper for the SLEUTH urban growth model.

It will automatically create scenario files from directories containing data layers and it can run simulations through MPI and HT-Condor.

Installation

You may install this library and helper scripts using pip.

$ pip install sleuth_automation

Application Programming Interface

import sleuth_automation as sa

# the library must be configured at least with the path to SLEUTH
sa.configure(sleuth_path='/opt/sleuth',
             use_mpi=True, mpi_cores=32)


# a directory containing input layers is given to a location instance
l = sa.Location('my_location',
                '/path/to/my_location')

l.calibrate_coarse()
l.calibrate_fine()
l.calibrate_final()

l.sleuth_predict(end=2050)

Command Line Interface

A single run may be achieved using the included sleuth_run.py script.

$ sleuth_run.py --sleuth_path /opt/sleuth/ \
                --location_dir /path/to/location/ \
                --location_name my_location \
                --mpi_cores 40 \
                --montecarlo_iterations 50 \
                --predict_end 2060

This will create scenario files for coarse, fine and final stages of calibration, extracting parameters from the control_stats.log files, and run predict.

If one wants to predict for several locations, one may group them in a directory and run them as a batch. Using the create_sleuth_condor_batch.py one may create a batch run for the HT-Condor queue management system.

$ create_sleuth_condor_batch.py --sleuth_path /opt/sleuth/ \
                                --region_dir /path/to/locations_group/ \
                                --mpi_cores 32 \
                                --predict_end 2060

This will create a submit.condor file in the locations directory, setup with the appropiate sleuth_run.py commands.

Documentation

https://readthedocs.org/projects/sleuth-automation/badge/?version=latest

Full documentation at http://sleuth-automation.readthedocs.io

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sleuth_automation-2.0.2.tar.gz (10.4 kB view details)

Uploaded Source

Built Distribution

sleuth_automation-2.0.2-py2-none-any.whl (24.0 kB view details)

Uploaded Python 2

File details

Details for the file sleuth_automation-2.0.2.tar.gz.

File metadata

  • Download URL: sleuth_automation-2.0.2.tar.gz
  • Upload date:
  • Size: 10.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/2.7.13

File hashes

Hashes for sleuth_automation-2.0.2.tar.gz
Algorithm Hash digest
SHA256 91064c3beccea4118e94488e87680af1bcb2e96e4c6fe6af4785bf16a60bb060
MD5 6ed2360846edc7cba3ab15718a47ad8f
BLAKE2b-256 b1b7930f289026506adc46005c711b15fb0391955a08b25910b45beb356a4f55

See more details on using hashes here.

File details

Details for the file sleuth_automation-2.0.2-py2-none-any.whl.

File metadata

  • Download URL: sleuth_automation-2.0.2-py2-none-any.whl
  • Upload date:
  • Size: 24.0 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/2.7.13

File hashes

Hashes for sleuth_automation-2.0.2-py2-none-any.whl
Algorithm Hash digest
SHA256 f52a005c877cad6d99135bd1382b77ad07bb35bd28ca6847f18d35198fb95639
MD5 aca12fe971aa818c504a8f768bc38da8
BLAKE2b-256 fd85c9699a69f1f3c005003b6c9ebda4de3e28733d7e28ba8f18ef16f22ebd58

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page