Skip to main content

Semantic Learning algorithm based on Inflate and deflate Mutation (SLIM GSGP)

Project description

SLIM (Semantic Learning algorithm based on Inflate and deflate Mutation)

slim_gsgp is a Python library that implements the SLIM algorithm, which is a variant of the Geometric Semantic Genetic Programming (GSGP). This library includes functions for running standard Genetic Programming (GP), GSGP, and all developed versions of the SLIM algorithm. Users can specify the version of SLIM they wish to use and obtain results accordingly. Slim's documentation can be accessed in Slim Documentation.

Installation

To install the library, use the following command:

pip install slim_gsgp

Usage

Running GP

To use the GP algorithm, you can use the following example:

from slim_gsgp.main_gp import gp  # import the slim_gsgp library
from slim_gsgp.datasets.data_loader import load_ppb  # import the loader for the dataset PPB
from slim_gsgp.evaluators.fitness_functions import rmse  # import the rmse fitness metric
from slim_gsgp.utils.utils import train_test_split  # import the train-test split function

# Load the PPB dataset
X, y = load_ppb(X_y=True)

# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, p_test=0.4)

# Split the test set into validation and test sets
X_val, X_test, y_val, y_test = train_test_split(X_test, y_test, p_test=0.5)

# Apply the GP algorithm
final_tree = gp(X_train=X_train, y_train=y_train,
                X_test=X_val, y_test=y_val,
                dataset_name='ppb', pop_size=100, n_iter=100)

# Show the best individual structure at the last generation
final_tree.print_tree_representation()

# Get the prediction of the best individual on the test set
predictions = final_tree.predict(X_test)

# Compute and print the RMSE on the test set
print(float(rmse(y_true=y_test, y_pred=predictions)))

Running standard GSGP

To use the GSGP algorithm, you can use the following example:

from slim_gsgp.main_gsgp import gsgp  # import the slim_gsgp library
from slim_gsgp.datasets.data_loader import load_ppb  # import the loader for the dataset PPB
from slim_gsgp.evaluators.fitness_functions import rmse  # import the rmse fitness metric
from slim_gsgp.utils.utils import train_test_split  # import the train-test split function


# Load the PPB dataset
X, y = load_ppb(X_y=True)

# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, p_test=0.4)

# Split the test set into validation and test sets
X_val, X_test, y_val, y_test = train_test_split(X_test, y_test, p_test=0.5)

# Apply the Standard GSGP algorithm
final_tree = gsgp(X_train=X_train, y_train=y_train,
                  X_test=X_val, y_test=y_val,
                  dataset_name='ppb', pop_size=100, n_iter=100,
                  reconstruct=True, ms_lower=0, ms_upper=1)

# Get the prediction of the best individual on the test set
predictions = final_tree.predict(X_test)

# Compute and print the RMSE on the test set
print(float(rmse(y_true=y_test, y_pred=predictions)))

Running SLIM

To use the SLIM GSGP algorithm, you can use the following example:

from slim_gsgp.main_slim import slim  # import the slim_gsgp library
from slim_gsgp.datasets.data_loader import load_ppb  # import the loader for the dataset PPB
from slim_gsgp.evaluators.fitness_functions import rmse  # import the rmse fitness metric
from slim_gsgp.utils.utils import train_test_split  # import the train-test split function
from slim_gsgp.utils.utils import generate_random_uniform  # import the mutation step function

# Load the PPB dataset
X, y = load_ppb(X_y=True)

# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, p_test=0.4)

# Split the test set into validation and test sets
X_val, X_test, y_val, y_test = train_test_split(X_test, y_test, p_test=0.5)

# Apply the SLIM GSGP algorithm
final_tree = slim(X_train=X_train, y_train=y_train,
                  X_test=X_val, y_test=y_val,
                  dataset_name='ppb', slim_version='SLIM+SIG2', pop_size=100, n_iter=100,
                  ms_lower=0, ms_upper=1, p_inflate=0.5)

# Show the best individual structure at the last generation
final_tree.print_tree_representation()

# Get the prediction of the best individual on the test set
predictions = final_tree.predict(X_test)

# Compute and print the RMSE on the test set
print(float(rmse(y_true=y_test, y_pred=predictions)))

Arguments for the gp, gsgp and slim function

Common arguments

  • X_train : A torch tensor with the training input data (default: None).
  • y_train : A torch tensor with the training output data (default: None).
  • X_test : A torch tensor with the testing input data (default: None).
  • y_test : A torch tensor with the testing output data (default: None).
  • dataset_name : A string specifying how the results will be logged (default: None).
  • pop_size : An integer specifying the population size (default: 100).
  • n_iter : An integer specifying the number of iterations (default: 1000).
  • elitism : A boolean specifying the presence of elitism (default: True).
  • n_elites : An integer specifying the number of elites (default: 1).
  • init_depth : An integer specifying the initial depth of the GP tree
    • default: 6 for gp and slim
    • default: 8 for gsgp
  • log_path : A string specifying where the results are going to be saved
    • default: os.path.join(os.getcwd(), "log", "gp.csv") for slim
    • default: os.path.join(os.getcwd(), "log", "gsgp.csv") for slim
    • default: os.path.join(os.getcwd(), "log", "slim_gsgpcsv") for slim
  • seed: An integer specifying the seed for randomness (default: 1).
  • log_level: An integer specifying the Level of detail to utilize in logging (default: 1).
  • verbose: An integer specifying whether results are to be displayed on console (default: 1).
  • fitness_function: A string specifying the fitness function that is to be used (default: "rmse").
  • initializer: A string specifying the population initialization technique that is to be used (default: "rhh").
  • minimization: A bool specifying whether the objective is to minimize the fitness function (True) or to maximize it (False) (default: True).
  • prob_const: A float specifying the probability of a constant being chosen rather than a terminal in trees creation (default: 0.2).
  • tree_functions: A list of strings with the names of the functions that are to be used in the trees (default: ['add', 'subtract', 'multiply', 'divide']).
  • tree_constants: A list of floats or integer values representing the constants that are allowed to appear in the trees (default: [2, 3, 4,5, -1]).
  • tournament_size: An int representing the tournament size to utilize during selection. (default: 2).
  • test_elite: A bool representing whether to test the elite individual on the test set at each generation. (default: True when X_test is not None).

Specific for gp

  • p_xo : A float specifying the crossover probability (default: 0.8).
  • max_depth : An integer specifying the maximum depth of the GP tree (default: 17).

Specific for gsgp

  • p_xo : A float specifying the crossover probability (default: 0.0).
  • ms_lower: A float or int representing the lower bound for mutation step (default: 0).
  • ms_upper: A float or int representing the upper bound for mutation step (default: 1).
  • reconstruct: A bool specifying whether to store the structure of individuals. More computationally expensive, but allows usage outside the algorithm (default: False).

Specific for slim

  • slim_version: A string specifying the version of SLIM-GSGP to run (default: "SLIM+SIG2").
  • ms_lower: A float or int representing the lower bound for mutation step (default: 0).
  • ms_upper: A float or int representing the upper bound for mutation step (default: 1).
  • p_inflate: A float specifying the probability to apply the inflate mutation (default: 0.2).
  • reconstruct: A bool specifying whether to store the structure of individuals. More computationally expensive, but allows usage outside the algorithm (default: False).
  • copy_parent: A bool representing whether to copy the original parent when mutation is impossible (due to depth rules or mutation constraints). (default: True).
  • copy_parent: A bool representing whether to copy the original parent when mutation is impossible (due to depth rules or mutation constraints). (default: True).

Additional Notes

If a user wishes to use their own dataset rather than one of the sixteen benchmarking datasets included with the slim library, they can load their data into a Pandas DataFrame, ensuring that the target variable is the last column. They can then call the load_pandas_df function from datasets.data_loader as follows:

from slim_gsgp.datasets.data_loader import load_pandas_df  # import the loader for the dataset PPB
import pandas as pd

# Reading the desired dataset
df = pd.read_csv("path/your_data.csv")

# Turning df into X and y torch.Tensors
X, y = load_pandas_df(df, X_y=True)

# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, p_test=0.4)

# Split the test set into validation and test sets
X_val, X_test, y_val, y_test = t

License

This libeary is MIT licensed.

The datasets provided are public. The table below specifies the source and license of each dataset.

Datset Source License
airfoil https://archive.ics.uci.edu/dataset/291/airfoil+self+noise Creative Commons Attribution 4.0 International (CC BY 4.0)
bike sharing https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset Creative Commons Attribution 4.0 International (CC BY 4.0)
bioavailability F. Archetti et al. (2007)* Creative Commons Attribution 4.0 International (CC BY 4.0)
breast cancer https://archive.ics.uci.edu/dataset/14/breast+cancer Creative Commons Attribution 4.0 International (CC BY 4.0)
concrete slump http://archive.ics.uci.edu/dataset/182/concrete+slump+test Creative Commons Attribution 4.0 International (CC BY 4.0)
concrete strength (different number of instances) https://archive.ics.uci.edu/dataset/165/concrete+compressive+strength Creative Commons Attribution 4.0 International (CC BY 4.0)
diabetes https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html CC0 License
efficiency_cooling https://archive.ics.uci.edu/dataset/242/energy+efficiency Creative Commons Attribution 4.0 International (CC BY 4.0)
efficiency_heating https://archive.ics.uci.edu/dataset/242/energy+efficiency Creative Commons Attribution 4.0 International (CC BY 4.0)
forest_fires https://archive.ics.uci.edu/dataset/162/forest+fires Creative Commons Attribution 4.0 International (CC BY 4.0)
istanbul https://archive.ics.uci.edu/dataset/247/istanbul+stock+exchange Creative Commons Attribution 4.0 International (CC BY 4.0)
ld50 F. Archetti et al. (2007)* Creative Commons Attribution 4.0 International (CC BY 4.0)
parkinsons_total_UPDRS https://archive.ics.uci.edu/dataset/189/parkinsons+telemonitoring Creative Commons Attribution 4.0 International (CC BY 4.0)
ppb F. Archetti et al. (2007)* Creative Commons Attribution 4.0 International (CC BY 4.0)
resid_build_sale_price https://archive.ics.uci.edu/dataset/437/residential+building+data+set Creative Commons Attribution 4.0 International (CC BY 4.0)

*Archetti, F., Lanzeni, S., Messina, E., Vanneschi, L. (2007). Genetic Programming and Other Machine Learning Approaches to Predict Median Oral Lethal Dose (LD50) and Plasma Protein Binding Levels (%PPB) of Drugs. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds) Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics. EvoBIO 2007. Lecture Notes in Computer Science, vol 4447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71783-6_2

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

slim_gsgp-0.1.8.tar.gz (1.1 MB view details)

Uploaded Source

Built Distribution

slim_gsgp-0.1.8-py3-none-any.whl (1.1 MB view details)

Uploaded Python 3

File details

Details for the file slim_gsgp-0.1.8.tar.gz.

File metadata

  • Download URL: slim_gsgp-0.1.8.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.15

File hashes

Hashes for slim_gsgp-0.1.8.tar.gz
Algorithm Hash digest
SHA256 be3449658ecba536fa4ec47fb982b4e11686d43c4cd5f1c45b7832ba08a04d74
MD5 479c5ffa252fff954ab450cd40dce087
BLAKE2b-256 0091c66935100ea2ad9560c2897f97f821dd5c10f539fde05eb35abc1cff9300

See more details on using hashes here.

File details

Details for the file slim_gsgp-0.1.8-py3-none-any.whl.

File metadata

  • Download URL: slim_gsgp-0.1.8-py3-none-any.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.15

File hashes

Hashes for slim_gsgp-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 5739b823544c5b15aeb4a43aab3ce2773dc82e630695c9db595da81b40f8e20a
MD5 a5ee5d481a4d094530e6514215bd68f5
BLAKE2b-256 9e1bfc551eef784204a301de85fb385b023c994094e2578dace7ad3c24dc1c75

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page