Slim-TPCA: a python package to expediate functional characterization of existing and newly identified protein complexes by optimizing existing TPCA algorithm implementations
Project description
Description
Slim-TPCA package is a python package which requires python version higher than 3.7 to work. Slim-TPCA has been optimised based on the TPCA method published in 2018. By using fewer temperature points, Slim-TPCA can reduce the volume of samples required, eliminate the batch effect in multiplex mass spectrometry experiments, and greatly shorten the calculation time required. In the Slim-TPCA package, users can perform data pre-processing, graph ROC plots to determine the ability of the data to predict protein interactions, calculate the TPCA signatures of the complexes and dynamic modulations of the complexes.
The features include:
- Calculates soluble fraction at each temperature.
- Calculates distance between every two proteins
- Based on the protein pair interaction Database, look for protein pairs where both proteins appear in the data.
- Calculate parameters of the ROC curve.
- Draw ROC plot based on parameters.
- Look for complexes that meet the requirements of the analysis.
- Calculate average distance between the subunit proteins of the complex.
- Sample virtual random complexes for calculation.
- Calculate TPCA signatures of complexes by sampling.
- Calculate TPCA signatures of complexes by fitting a beta distribution to random complexes.
- Multiple sets of data may identify different proteins and align them here.
- Calculate TPCA dynamic modulation signatures of complexes by sampling and absolute distance.
- Calculate TPCA dynamic modulation signatures of complexes by sampling and relative distance.
- Calculate TPCA dynamic modulation signatures of complexes by Beta distribution fitting and absolute distance.
- Calculate TPCA dynamic modulation signatures of complexes by Beta distribution fitting and relative distance.
For more information, see the documentation on https://slim-tpca.readthedocs.io/en/latest/index.html
Dependencies
- python (tested for ver 3.7)
- numpy
- pandas
- matplotlib
- scipy
- sklearn
- random
- seaborn
- copy
- re
Installation
pip install Slim-TPCA
from Slim_TPCA import Slim_TPCA
Message:
- We welcome contributions. If you would like to add the interface to other codes, or extend the capability of Slim-TPCA, please contact us! 11930100@mail.sustech.edu.cn
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file Slim-TPCA-0.1.3.tar.gz
.
File metadata
- Download URL: Slim-TPCA-0.1.3.tar.gz
- Upload date:
- Size: 6.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/65.5.1 requests-toolbelt/0.8.0 tqdm/4.64.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1621a12bc92c0aff5d06b57d21109fd7878ab883d2bf69421199fccd1e95accf |
|
MD5 | 49b9190c3b54412bebac77c512d6cc47 |
|
BLAKE2b-256 | 7e12775ccc0b912592a8821cb228164ac3b04628d3b2282c066e923c2cbf37b5 |
File details
Details for the file Slim_TPCA-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: Slim_TPCA-0.1.3-py3-none-any.whl
- Upload date:
- Size: 5.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/65.5.1 requests-toolbelt/0.8.0 tqdm/4.64.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1bd498610fe8a6e07d002e9c8c5a7b50f84e81e87bd567c83e2a50c84460250e |
|
MD5 | 0d49965e99a4c95e32e2d5e4ab2f4a93 |
|
BLAKE2b-256 | 107174a54b348be22c70fffb3ec20d26b40a2349bb258238de6ec58ef7d17a4c |