Sling Binary for Linux (AMD64)
Project description
Slings from a data source to a data target.
Installation
pip install sling
Then you should be able to run sling --help
from command line.
Running a Extract-Load Task
CLI
sling run --src-conn MY_PG --src-stream myschema.mytable \
--tgt-conn YOUR_SNOWFLAKE --tgt-object yourschema.yourtable \
--mode full-refresh
Or passing a yaml/json string or file
sling run -c '
source:
conn: MY_PG
stream: myschema.mytable
target:
conn: YOUR_SNOWFLAKE
object: yourschema.yourtable
mode: full-refresh
'
# OR
sling run -c /path/to/config.json
From Lib
from sling import Sling
config = {
'source': {
'conn': 'MY_PG',
'stream': "select * from my_table",
},
'target': {
'conn': "s3://my_bucket/my_folder/new_file.csv",
},
}
Sling(**config).run()
Config Schema
--src-conn
/source.conn
and --tgt-conn
/target.conn
can be a name or URL of a folder:
MY_PG
(connection ref in db, profile or env)postgresql://user:password!@host.loc:5432/database
s3://my_bucket/my_folder/file.csv
gs://my_google_bucket/my_folder/file.json
file:///tmp/my_folder/file.csv
(local storage)
--src-stream
/source.stream
can be an object name to stream from:
TABLE1
SCHEMA1.TABLE2
OBJECT_NAME
select * from SCHEMA1.TABLE3
/path/to/file.sql
(if source conn is DB)
--tgt-object
/target.object
can be an object name to write to:
TABLE1
SCHEMA1.TABLE2
Example as JSON
{
"source": {
"conn": "MY_PG_URL",
"stream": "select * from my_table",
"options": {}
},
"target": {
"conn": "s3://my_bucket/my_folder/new_file.csv",
"options": {
"header": false
}
}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sling-linux-amd64-1.2.5.tar.gz
(49.1 MB
view hashes)